A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Femtosecond dynamics of flavin cofactor in DNA photolyase: radical reduction, local solvation, and charge recombination. | LitMetric

Femtosecond dynamics of flavin cofactor in DNA photolyase: radical reduction, local solvation, and charge recombination.

J Phys Chem B

Departments of Physics, Chemistry, and Biochemistry, OSU Biophysics, Chemical Physics, and Biochemistry Programs, 174 West 18th Avenue, The Ohio State University, Columbus, OH 43210, USA.

Published: February 2005

We report here our femtosecond studies of the photoreduction dynamics of the neutral radical flavin (FADH) cofactor in E. coli photolyase, a process converting the inactive form to the biologically active one, a fully reduced deprotonated flavin FADH(-). The observed temporal absorption evolution revealed two initial electron-transfer reactions, occurring in 11 and 42 ps with the neighboring aromatic residues of W382 and F366, respectively. The new transient absorption, observed at 550 nm previously in photolyase, was found from the excited-state neutral radical and is probably caused by strong interactions with the adenine moiety through the flavin U-shaped configuration and the highly polar/charged surrounding residues. The solvation dynamics from the locally ordered water molecules in the active site was observed to occur in approximately 2 ps. These ultrafast ordered-water motions are critical to stabilizing the photoreduction product FADH(-) instantaneously to prevent fast charge recombination. The back electron-transfer reaction was found to occur in approximately 3 ns. This slow process, consistent with ultrafast stabilization of the catalytic cofactor, favors photoreduction in photolyase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp044652bDOI Listing

Publication Analysis

Top Keywords

charge recombination
8
neutral radical
8
femtosecond dynamics
4
flavin
4
dynamics flavin
4
flavin cofactor
4
cofactor dna
4
photolyase
4
dna photolyase
4
photolyase radical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!