The lead contamination, lead species and source assignment were studied by a combination of several analytical techniques such as Proton-induced X-ray emission analysis (PIXE), Proton microprobe (micro-PIXE), Inductively coupled plasma-mass spectrometry (ICP-MS) and extended X-ray absorption fine structure (EXAFS) techniques. The results indicate that the lead concentration in the air of Shanghai gradually decreased over the last years. The atmospheric lead concentration of PM10 in the winter of 2002 was 369 ng x m(-3), which had declined by 28% in 2001, and in the winter of 2003 it decreased further to 237 ng x m(-3). The main lead species in the samples collected in the winter of 2003 were probably PbCl2, PbSO4 and PbO. The source apportionment was calculated in terms of the combination of lead isotope ratios and lead mass balance method, assisted by single particle analysis with micro-PIXE and pattern recognition. The results suggest that the major contributors of atmospheric lead pollution in Shanghai are the coal combustion dust; the metallurgic dust and vehicle exhaust particles, with a contribution around 50%, 35% and 15%, respectively. It probably is the first time to give a city a quantitative estimation of lead pollution contribution from emission sources. The influence from leaded gasoline was still present in the atmosphere by four or five years after the phasing out of leaded gasoline.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lead pollution
12
lead
10
lead species
8
lead concentration
8
atmospheric lead
8
winter 2003
8
leaded gasoline
8
[comprehensive study
4
study lead
4
pollution atmospheric
4

Similar Publications

Assessing groundwater contamination risk is a critical aspect of preventing and managing groundwater pollution. There was a research gap in the investigation of uncertainties in modeling groundwater contamination risks in aquifers. This study addresses this gap using Bayesian Model Averaging (BMA), with a novel focus on risk exposures from geogenic contaminants, such as lead (Pb).

View Article and Find Full Text PDF

Prescriptions (Rx) for Prevention: Clinical Tools for Integrating Environmental Health into Pediatric Clinical Care.

J Public Health Manag Pract

January 2025

Department of Environmental Medicine and Public Health (Mr Bland, Dr Zajac, Ms Guel, Dr Pendley, Dr Galvez, Dr Sheffield), Icahn School of Medicine at Mount Sinai, New York, New York; Harvard Kenneth C. Griffin Graduate School of Arts and Sciences (Mr Wilson), Boston, Massachusetts; Environmental Research and Translation for Health (EaRTH) Center (Ms Charlesworth), University of California, San Francisco, California; Community Engagement Core, Environmental Health Sciences Center at Department of Environmental Medicine (Dr Korfmacher), University of Rochester Medical Center, Rochester, New York; Pediatric Environmental Health and Cincinnati Children's Hospital Medical Center (Dr Newman), Cincinnati, Ohio; Philadelphia Regional Center for Children's Environmental Health, Center of Excellence in Environmental Toxicology, Perelman School of Medicine (Dr Howarth), University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Academic General Pediatrics, Children's Hospital at Montefiore (Dr Balk), Albert Einstein College of Medicine, Bronx, New York.

The integration of environmental health (EH) into routine clinical care for children is in its early stages. The vision of pediatric EH is that all clinicians caring for children are aware of and able to help connect families to needed resources to reduce harmful environmental exposures and increase health-enhancing ones. Environmental exposures include air pollution, substandard housing, lead, mercury, pesticides, consumer products chemicals, drinking water contaminants, industrial facility emissions and, increasingly, climate change-related extreme weather and heat events.

View Article and Find Full Text PDF

Background: Chronic stress, characterized by sustained activation of physiological stress response systems, is a key risk factor for numerous health conditions. Allostatic load (AL), a biomarker of cumulative physiological stress, offers a quantitative measure of this burden. Lifestyle habits such as alcohol consumption and smoking, alongside environmental exposures to toxic metals like lead, cadmium, and mercury, were individually implicated in increasing AL.

View Article and Find Full Text PDF

The Mediterranean Sea is an intercontinental marine environment renowned for its biodiversity and ecological significance. However, it is also one of the most polluted seas globally with significant levels of microplastics and heavy metals among other emerging contaminants. In Lebanon, inadequate waste management infrastructure and unregulated industrial discharges have exacerbated water quality deterioration by introducing these complex contaminants into surface and seawater.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!