The dependence of force enhancement on activation in human adductor pollicis.

Eur J Appl Physiol

Human Performance Laboratory, University of Calgary, Calgary, Alta, Canada.

Published: September 2006

It has been well recognized that the steady-state isometric force after active muscle/fiber stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions (MVC). However, recent evidence obtained for sub-MVC suggests that force enhancement properties are different from those observed for electrically induced and MVC. Specifically, it appears that force enhancement is activation-dependent and that there is a subject-specific threshold for force enhancement in sub-MVC. To address these suggestions, the relationship between force enhancement and voluntary activation during stretch was investigated in 11 healthy subjects. Human adductor pollicis muscles were studied and force enhancement was measured while muscle activation during the steady-state isometric phase was controlled at a level of 30% of MVC. In order to study the effects of activation on force enhancement, subjects performed stretch contractions at 0, 10, 30, 60, and 100% of maximal voluntary effort while the steady-state isometric force after stretch, obtained at 30% of activation in all cases, was compared to the corresponding values measured in the isometric reference contractions. There was no force enhancement if muscle stretching occurred passively but all subjects showed force enhancement when muscle stretching occurred at maximal voluntary effort. When increasing the level of activation during the stretch phase, force enhancement increased, and the number of subjects who showed force enhancement increased as well. We conclude from these results that force enhancement during voluntary contractions is activation-dependent with a threshold that is subject-specific.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-006-0170-4DOI Listing

Publication Analysis

Top Keywords

force enhancement
48
force
14
enhancement
12
steady-state isometric
12
isometric force
12
maximal voluntary
12
human adductor
8
adductor pollicis
8
voluntary contractions
8
enhancement voluntary
8

Similar Publications

Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.

View Article and Find Full Text PDF

Factors Relating to Sprint Swimming Performance: A Systematic Review.

Sports Med

January 2025

Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.

Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.

View Article and Find Full Text PDF

Computational investigation of the perylene-TCNQ complex: effects of chalcogen and fluorine substitutions.

J Mol Model

January 2025

Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.

Context: Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions.

View Article and Find Full Text PDF

Interobserver and sequence variability in the delineation of pelvic organs at risk on magnetic resonance images.

Radiol Oncol

January 2025

1State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China.

Background: This study evaluates the contouring variability among observers using MR images reconstructed by different sequences and quantifies the differences of automatic segmentation models for different sequences.

Patients And Methods: Eighty-three patients with pelvic tumors underwent T1-weighted image (T1WI), contrast enhanced Dixon T1-weighted (T1dixonc), and T2-weighted image (T2WI) MR imaging on a simulator. Two observers performed manual delineation of the bladder, anal canal, rectum, and femoral heads on all images.

View Article and Find Full Text PDF

Entropy-based methods for formulating bottom-up ultra-coarse-grained models.

J Chem Phys

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.

Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!