High-level induction of fetal (gamma) globin gene expression for therapy of beta-hemoglobinopathies likely requires local chromatin modification and dissociation of repressor complexes for gamma-globin promoter activation. A novel gamma-globin-inducing short-chain fatty acid derivative (SCFAD), RB7, which was identified through computational modeling, produced a 6-fold induction in a reporter assay that detects only strong inducers of the gamma-globin gene promoter and in cultured human erythroid progenitors. To elucidate the molecular mechanisms used by high-potency SCFADs, chromatin immunoprecipitation (ChIP) assays performed at the human gamma- and beta-globin gene promoters in GM979 cells and in erythroid progenitors demonstrate that RB7 and butyrate induce dissociation of HDAC3 (but not HDAC1 or HDAC2) and its adaptor protein NCoR, specifically from the gamma-globin gene promoter. A coincident and proportional recruitment of RNA polymerase II to the gamma-globin gene promoter was observed with exposure to these gamma-globin inducers. Knockdown of HDAC3 by siRNA induced transcription of the gamma-globin gene promoter, demonstrating that displacement of HDAC3 from the gamma-globin gene promoter by the SCFAD is sufficient to induce gamma-globin gene expression. These studies demonstrate new dynamic alterations in transcriptional regulatory complexes associated with SCFAD-induced activation of the gamma-globin gene and provide a specific molecular target for potential therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895523PMC
http://dx.doi.org/10.1182/blood-2005-12-010934DOI Listing

Publication Analysis

Top Keywords

gamma-globin gene
32
gene promoter
20
gene expression
12
gamma-globin
10
gene
10
short-chain fatty
8
induce gamma-globin
8
erythroid progenitors
8
promoter
6
fatty acids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!