Influenza A virus pneumonia is characterized by severe lung injury and high mortality. Early infection elicits a strong recruitment of monocytes from the peripheral blood across the endo-/epithelial barrier into the alveolar air space. However, it is currently unclear which of the infected resident lung cell populations, alveolar epithelial cells or alveolar macrophages, elicit monocyte recruitment during influenza A virus infection. In the current study, we investigated whether influenza A virus infection of primary alveolar epithelial cells and resident alveolar macrophages would elicit a basal-to-apical monocyte transepithelial migration in vitro. We found that infection of alveolar epithelial cells with the mouse-adapted influenza A virus strain PR/8 strongly induced the release of monocyte chemoattractants CCL2 and CCL5 followed by a strong monocyte transepithelial migration, and this monocytic response was strictly dependent on monocyte CCR2 but not CCR5 chemokine receptor expression. Analysis of the adhesion molecule pathways demonstrated a role of ICAM-1, VCAM-1, integrin-associated protein (CD47), and junctional adhesion molecule-c on the epithelial cell surface interacting with monocyte beta(1) and beta(2) integrins and integrin-associated protein in the monocyte transmigration process. Importantly, addition of influenza A virus-infected alveolar macrophages further enhanced monocyte transmigration across virus-infected epithelium in a TNF-alpha-dependent manner. Collectively, the data show an active role for virus-infected alveolar epithelium in the regulation of CCL2/CCR2-dependent monocyte transepithelial migration during influenza infection that is essentially dependent on both classical beta(1) and beta(2) integrins but also junctional adhesion molecule pathways.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.177.3.1817DOI Listing

Publication Analysis

Top Keywords

influenza virus
20
alveolar epithelial
16
epithelial cells
16
monocyte transepithelial
16
transepithelial migration
16
virus infection
12
alveolar macrophages
12
monocyte
10
alveolar
9
migration influenza
8

Similar Publications

Molecular Evolution of the H5 and H7 Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Motif.

Rev Med Virol

January 2025

United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA.

Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates.

View Article and Find Full Text PDF

Lactoferrin (Lf) is a naturally occurring glycoprotein known for its antiviral and antibacterial properties and is present in various physiological fluids. Numerous studies have demonstrated its antiviral effectiveness against multiple viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus (IFV), herpes simplex virus (HSV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Lf, a vital component of the mucosal defense system, plays a crucial role in inhibiting viral infection by binding to both host cells and viral particles, such as the Hepatitis C virus (HCV).

View Article and Find Full Text PDF

Frequency of Bovine Respiratory Disease Complex Bacterial and Viral Agents Using Multiplex Real-Time qPCR in Quebec, Canada, from 2019 to 2023.

Vet Sci

December 2024

Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada.

The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc.

View Article and Find Full Text PDF

As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.

View Article and Find Full Text PDF

The host range of HPAIV H5N1 was recently expanded to include ruminants, particularly dairy cattle in the United States (US). Shortly after, human H5N1 infection was reported in a dairy worker in Texas following exposure to infected cattle. Herein, we rescued the cattle-origin influenza A/bovine/Texas/24-029328-02/2024(H5N1, rHPbTX) and A/Texas/37/2024(H5N1, rHPhTX) viruses, identified in dairy cattle and human, respectively, and their low pathogenic forms, rLPbTX and rLPhTX, with monobasic HA cleavage sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!