T cell responses are important to the control of infection but are deleterious if not regulated. IFN-gamma-deficient mice infected with mycobacteria exhibit enhanced accumulation of activated effector T cells and neutrophils within granulomatous lesions. These cells do not control bacterial growth and compromise the integrity of the infected tissue. We show that IFN-gamma-deficient mice have increased numbers of IL-17-producing T cells following infection with Mycobacterium bovis bacille Calmette Guérin. Furthermore, exogenous IFN-gamma increases IL-12 and decreases IL-23 production by bacille Calmette Guérin-infected bone marrow-derived dendritic cells and reduces the frequency of IL-17-producing T cells induced by these bone marrow-derived dendritic cells. These data support the hypothesis that, during mycobacterial infection, both IFN-gamma- and IL-17-producing T cells are induced, but that IFN-gamma serves to limit the IL-17-producing T cell population. This counterregulation pathway may be an important factor in limiting mycobacterially associated immune-mediated pathology.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.177.3.1416DOI Listing

Publication Analysis

Top Keywords

il-17-producing cells
12
cells
8
mycobacterial infection
8
ifn-gamma-deficient mice
8
bacille calmette
8
bone marrow-derived
8
marrow-derived dendritic
8
dendritic cells
8
cells induced
8
il-17-producing
5

Similar Publications

Objective: To describe immune responses following administration of experimental Salmonella Dublin siderophore receptor protein (SRP) vaccines in Holstein heifer calves with adequate passive antibody transfer.

Methods: Calves were randomly assigned to receive placebo, vaccination with S Dublin SRP in adjuvant A, or vaccination with S Dublin SRP in adjuvant B at 7 ± 3 days of age and 3 weeks later. Before each vaccination, 4 and 8 days after the second vaccination (postvaccination), and 61 to 91 days postvaccination, S Dublin antibody titers were measured.

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Downregulation of semaphorin 4A in keratinocytes reflects the features of non-lesional psoriasis.

Elife

December 2024

Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.

Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown.

View Article and Find Full Text PDF

Background: CD8+ T cells have been found to accumulate in atherosclerotic plaques. However, the specific role of CD8+ T cell subsets in the development of atherosclerosis is still not fully understood.

Objective: To investigate the presence and functions of type 1 CD8+ T (Tc1) cells and interleukin-17 (IL-17)-producing CD8+ T (Tc17) cells.

View Article and Find Full Text PDF

A plethora of data supports a major role of CD4 and CD8 T lymphocytes for the initiation, progression and maintenance of allergic contact dermatitis (ACD). However, in-depth understanding of the molecular mechanisms is still limited. NFATc1 plays an essential role in T cell activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!