The ND1 subunit gene of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) is a hot spot for mutations causing Leber hereditary optic neuropathy and several mutations causing the mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). We have used Escherichia coli and Paracoccus denitrificans as model systems to study the effect of mutations 3946 and 3949, which change conserved residues in ND1 and cause MELAS. The vicinity of these mutations was also explored with a series of mutations in charged residues. The 3946 mutation results in E214K substitution in human ND1. Replacement of the equivalent residue in E. coli with lysine or glutamine detracted from enzyme assembly and the assembled enzyme was inactive. However, the equivalent E234Q mutant enzyme in P. denitrificans failed to assemble completely (or was rapidly degraded). Also the corresponding substitution with aspartate decreased the enzyme activity in P. denitrificans and E. coli. The 3949-equivalent substitution, Y229H in E. coli, lowered the catalytic activity by 30%. In addition, an activation of the enzyme during catalytic turnover was seen in this bacterial NDH-1, something that was even more pronounced in another mutant in the same loop, D213E. Several other mutations in this region decreased the enzyme activity. The studied MELAS mutations are situated in a matrix-side loop, which appears to be highly sensitive to structural perturbations. The results provide new information on the function of the region affected by the MELAS mutations 3946 and 3949 that is not obtainable from patient samples or current eukaryote models.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddl176DOI Listing

Publication Analysis

Top Keywords

melas mutations
12
mutations 3946
12
3946 3949
12
nd1 subunit
8
mutations
8
mutations causing
8
decreased enzyme
8
enzyme activity
8
enzyme
6
melas
5

Similar Publications

Diagnosis and Management of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes Syndrome.

Biomolecules

November 2024

Departments of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea.

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a complex mitochondrial disorder characterized by a wide range of systemic manifestations. Key clinical features include recurrent stroke-like episodes, seizures, lactic acidosis, muscle weakness, exercise intolerance, sensorineural hearing loss, diabetes, and progressive neurological decline. MELAS is most commonly associated with mutations in mitochondrial DNA, particularly the m.

View Article and Find Full Text PDF

Mitochondrial tRNA (mt-tRNA) modifications play pivotal roles in decoding and sustaining tRNA stability, thereby enabling synthesis of essential respiratory complex proteins in mitochondria. Consequently, loss of human mt-tRNA modifications caused by mutations in the mitochondrial or nuclear genome can cause life-threatening mitochondrial diseases such as encephalopathy and cardiomyopathy. In this article, we first provide a comprehensive overview of the functions of mt-tRNA modifications, the responsible modification enzymes, and the diseases caused by loss of mt-tRNA modifications.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans.

View Article and Find Full Text PDF

Fabry Disease: A Rare Mutation With Common Clinical Presentation.

Cureus

October 2024

Internal Medicine, Unidade Local de Saúde de Trás-os-Montes e Alto Douro, Chaves, PRT.

Strokes are infrequent in younger adults, making diagnosis of their underlying causes challenging. Fabry disease, a rare genetic condition with a complex and not fully understood pathophysiology, is one potential cause. This report describes a 41-year-old woman with a history of glaucoma, recurrent uveitis, ischemic stroke affecting the posterior circulation, and sensorineural hearing loss.

View Article and Find Full Text PDF
Article Synopsis
  • * A 51-year-old woman with MELAS experienced symptoms of CIPO, including nausea and abdominal distension, after treatment for a stroke-like episode; imaging showed intestinal dilatation without obstruction.
  • * Acotiamide, a medication that enhances gastrointestinal motility by inhibiting acetylcholinesterase, improved her CIPO symptoms, suggesting its potential role in treating such patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!