O2 microsensors for minimally invasive tissue monitoring.

J R Soc Interface

Department of Engineering, Medical Engineering Division, Mile End Road, Queen Mary, University of London, London E1 4NS, UK.

Published: November 2004

Tissue oxygenation is a key factor ensuring normal tissue functions and viability. Continuous real-time monitoring of the partial pressure of oxygen, pO(2), in tissues gives insight into the dynamic fluctuations of O(2) supplies to tissues by blood circulation. Small oxygen sensors enable investigations of the spatial variation of pO(2) in tissues at different locations in relation to local microvessels. In this paper, pO(2) measurement using microelectrodes and biocompatible sensorsv is discussed and recent progress of their application in human skin is reviewed. Emphasis is given to working principles of a number of existing oxygen sensors and their potential application in vivo and in tissue engineering. Results on spatial and temporal variations of the pO(2) in human skin introduced by localized ischaemia-reperfusion are presented when the surface of the skin is covered by an oxygen-free paraffin oil layer and the range of the tissue pO(2) is deduced to be between 0 and 60 mmHg. In the study, pO(2) increases from 8.0 +/- 3.2 mmHg (n = 6) at the surface of the skin to 35.2 +/- 8.0 mmHg (n = 9) at a depth just above the subpapillary plexus. Temporal decay in pO(2) following tissue compression and rise in pO(2) following pressure release can be described using mono-exponential functions. The time constant for the exponential decay, tau = 8.44 +/- 1.53 s (n = 7) is consistently greater than that for the exponential rises, tau' = 4.75 +/- 0.82 s (n = 6). The difference in pO2 change with the time following tissue compression and pressure release reveals different dynamic mechanisms involved in the two transient phases. The elevated steady state pO(2) following reperfusion, which is approximately 20% higher than the pre-occlusion value, indicates localized reactive hyperaemia. Possible applications of O(2) microsensors in diseases, e.g. tumours, pressure ulcers, are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618928PMC
http://dx.doi.org/10.1098/rsif.2004.0013DOI Listing

Publication Analysis

Top Keywords

po2
10
po2 tissues
8
oxygen sensors
8
human skin
8
surface skin
8
+/- mmhg
8
tissue compression
8
pressure release
8
tissue
7
microsensors minimally
4

Similar Publications

The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.

View Article and Find Full Text PDF

This study aims to improve our understanding of acute ischemic stroke clot imaging by integrating CT attenuation information with MRI susceptibility signal of thrombi. For this proof-of-principle experimental study, fifty-seven clot analogs were produced using ovine venous blood with a broad histological spectrum. Each clot analog was analyzed to determine its RBC content and chemical composition, including water, Fe III, sodium, pH, and pO2.

View Article and Find Full Text PDF

Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction.

ACS Nano

January 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.

View Article and Find Full Text PDF

Venous thromboembolism, characterized by deep vein thrombosis and pulmonary embolism, is the third cardiovascular disease in the world. Deep vein thrombosis occurs when a blood clot forms in areas of impaired blood flow, and it is significantly affected by environmental factors. Local hypoxia, caused by venous stasis, plays a critical role in deep vein thrombosis under normal conditions, and this effect is intensified when the Po decreases, such as during air travel or high-altitude exposure.

View Article and Find Full Text PDF

Fluorination of Aza-BODIPY for Cancer Cell Plasma Membrane-Targeted Imaging and Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.

Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!