A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 177

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of high-frequency rheology measurements for analyzing protein-protein interactions in high protein concentration solutions using a model monoclonal antibody (IgG2). | LitMetric

The purpose of this work was to explore the utilization of high-frequency rheology analysis for assessing protein-protein interactions in high protein concentration solutions. Rheology analysis of a model monoclonal immunoglobulin G2 solutions was conducted on indigenously developed ultrasonic shear rheometer at frequency of 10 MHz. Solutions at pH 9.0 behaved as most viscous and viscoelastic whereas those at pH 4.0 and 5.4 exhibited lower viscosity and viscoelasticity, respectively. Intrinsic viscosity, hydrophobicity, and conformational analysis could not account for the rheological behavior of IgG2 solutions. Zeta potential and light scattering measurements showed the significance of electroviscous and specific protein-protein interactions in governing rheology of IgG2 solutions. Specific protein-protein interactions resulted in formation of reversible higher order species of monomer. Solution storage modulus (G'), and not loss modulus or complex viscosity, was the more reliable parameter for predicting protein-protein interactions. Predictions about the nature of protein-protein interactions made on the basis of solution G' were found to be consistent with observed effect of pH and ionic strength on zeta potential and scattered intensity of IgG2 solutions. Results demonstrated the potential of high-frequency storage modulus measurements for understanding behavior of proteins in solutions and predicting the nature of protein-protein interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20663DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
28
igg2 solutions
12
high-frequency rheology
8
interactions high
8
high protein
8
protein concentration
8
solutions
8
concentration solutions
8
model monoclonal
8
rheology analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!