Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this work was to explore the utilization of high-frequency rheology analysis for assessing protein-protein interactions in high protein concentration solutions. Rheology analysis of a model monoclonal immunoglobulin G2 solutions was conducted on indigenously developed ultrasonic shear rheometer at frequency of 10 MHz. Solutions at pH 9.0 behaved as most viscous and viscoelastic whereas those at pH 4.0 and 5.4 exhibited lower viscosity and viscoelasticity, respectively. Intrinsic viscosity, hydrophobicity, and conformational analysis could not account for the rheological behavior of IgG2 solutions. Zeta potential and light scattering measurements showed the significance of electroviscous and specific protein-protein interactions in governing rheology of IgG2 solutions. Specific protein-protein interactions resulted in formation of reversible higher order species of monomer. Solution storage modulus (G'), and not loss modulus or complex viscosity, was the more reliable parameter for predicting protein-protein interactions. Predictions about the nature of protein-protein interactions made on the basis of solution G' were found to be consistent with observed effect of pH and ionic strength on zeta potential and scattered intensity of IgG2 solutions. Results demonstrated the potential of high-frequency storage modulus measurements for understanding behavior of proteins in solutions and predicting the nature of protein-protein interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.20663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!