Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. It is mediated by activated lymphocytes, macrophages, microglia, and complement. In MS, myelin-forming oligodendrocytes (OLGs) are the targets of inflammatory and immune attacks. OLG death by apoptosis or necrosis causes the cell loss seen in MS plaques. Studies of experimental allergic encephalomyelitis (EAE) in caspase 11-deficient mice show that caspase-mediated death of OLGs is critical to demyelination. Complement activation may affect MS pathogenesis through activated terminal complex C5b-9, which promotes demyelination, and through sublytic C5b-9, which protects OLGs from apoptosis. By inducing EAE in C5-deficient mice, we showed that complement C5 promotes axon preservation and new myelin formation, which protect OLGs from apoptosis. These findings indicate that activated complement C5b-9 plays a proinflammatory role in acute MS but may also protect OLGs from death in chronic MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1682/jrrd.2004.08.0111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!