Intracellular Ca2+ levels rapidly rise following cross-linking of the T-cell receptor (TCR) and function as a critical intracellular second messenger in T-cell activation. It has been relatively under appreciated that K+ channels play an important role in Ca2+ influx into T lymphocytes by helping to maintain a negative membrane potential which provides an electrochemical gradient to drive Ca2+ influx. Here we show that the Ca2+-activated K+ channel, KCa3.1, which is critical for Ca2+ influx in reactivated naive T cells and central memory T cells, requires phosphatidylinositol-3 phosphatase [PI(3)P] for activation and is inhibited by the PI(3)P phosphatase myotubularin-related protein 6 (MTMR6). Moreover, by inhibiting KCa3.1, MTMR6 functions as a negative regulator of Ca2+ influx and proliferation of reactivated human CD4 T cells. These findings point to a new and unexpected role for PI(3)P and the PI(3)P phosphatase MTMR6 in the regulation of Ca2+ influx in activated CD4 T cells and suggest that MTMR6 plays a critical role in setting a minimum threshold for a stimulus to activate a T cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592754PMC
http://dx.doi.org/10.1128/MCB.00352-06DOI Listing

Publication Analysis

Top Keywords

ca2+ influx
20
cd4 cells
12
phosphatidylinositol-3 phosphatase
8
phosphatase myotubularin-related
8
myotubularin-related protein
8
pi3p phosphatase
8
ca2+
6
cells
5
influx
5
protein negatively
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!