A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increase in vascular permeability and vasodilation are critical for proangiogenic effects of stem cell therapy. | LitMetric

Background: Proangiogenic cell therapy based on administration of bone marrow-derived mononuclear cells (BMCs) or endothelial progenitor cells (EPCs) is now under investigation in humans for the treatment of ischemic diseases. However, mechanisms leading to the beneficial effects of BMCs and EPCs remain unclear.

Methods And Results: BMC- and CD34+-derived progenitor cells interacted with ischemic femoral arteries through SDF-1 and CXCR4 signaling and released nitric oxide (NO) via an endothelial nitric oxide synthase (eNOS)-dependent pathway. BMC-induced NO production promoted a marked vasodilation and disrupted vascular endothelial-cadherin/beta-catenin complexes, leading to increased vascular permeability. NO-dependent vasodilation and hyperpermeability were critical for BMC infiltration in ischemic tissues and their proangiogenic potential in a model of hindlimb ischemia in mice.

Conclusions: Our results propose a new concept that proangiogenic progenitor cell activity does not rely only on their ability to differentiate into endothelial cells but rather on their capacity to modulate the function of preexisting vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.589937DOI Listing

Publication Analysis

Top Keywords

vascular permeability
8
cell therapy
8
progenitor cells
8
nitric oxide
8
increase vascular
4
permeability vasodilation
4
vasodilation critical
4
proangiogenic
4
critical proangiogenic
4
proangiogenic effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!