Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aqueous solutions of lactose and polyethylene glycol (PEG) were spray dried in a Büchi Model 191 spray dryer with the aim to investigate the effect of PEG on the crystallinity of the composite. A PEG concentration of 10.7% by weight of solids was studied for PEG 200, 600, 1500, 4000 and 8000. For PEG 200 and 4000 additional concentrations from 1.5-19.3% to 1.5-32.4%, respectively, were investigated. The spray dried composites were analysed with X-ray powder diffraction and modulating differential scanning calorimetry. The crystallinity of lactose in the composites varied from 0% to 60%, dependent on the molecular weight and concentration of PEG. Apparently, lactose crystallinity is promoted by low molecular weight and high concentration of the PEG. PEG did not affect the lactose glass transition temperature. It is suggested that lactose and PEG are solidified separately during spray drying and that partial crystallization of lactose is associated with effects of PEG on the rate of drying.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2006.05.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!