In the recent X-ray crystallographic structural models of photosystem II, Glu189 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn(4) cluster. To determine if D1-Glu189 ligates a Mn ion that undergoes oxidation during one or more of the S(0) --> S(1), S(1) --> S(2), and S(2) --> S(3) transitions, the FTIR difference spectra of the individual S-state transitions in D1-E189Q and D1-E189R mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that neither mutation significantly alters the mid-frequency regions (1800-1200 cm(-)(1)) of any of the FTIR difference spectra. Importantly, neither mutation eliminates any specific symmetric or asymmetric carboxylate stretching mode that might have been assigned to D1-Glu189. The small spectral alterations that are observed are similar in amplitude to those that are observed in wild-type PSII particles that have been exchanged into FTIR analysis buffer by different methods or those that are observed in D2-H189Q mutant PSII particles (the residue D2-His189 is located >25 A from the Mn(4) cluster and accepts a hydrogen bond from Tyr Y(D)). The absence of significant mutation-induced spectral alterations in the D1-Glu189 mutants shows that the oxidation of the Mn(4) cluster does not alter the frequencies of the carboxylate stretching modes of D1-Glu189 during the S(0) --> S(1), S(1) --> S(2), or S(2) --> S(3) transitions. One explanation of these data is that D1-Glu189 ligates a Mn ion that does not increase its charge or oxidation state during any of these S-state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Glu189 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn(4) cluster during the S(1) --> S(2) transition be localized on the Mn ion that is ligated by the alpha-COO(-) group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn(4) cluster during the S(0) --> S(1) and S(2) --> S(3) transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Glu189, or D1-Ala344. An alternative explanation of the FTIR data is that D1-Glu189 does not ligate the Mn(4) cluster. This conclusion would be consistent with earlier spectroscopic analyses of D1-Glu189 mutants, but would require that the proximity of D1-Glu189 to manganese in the X-ray crystallographic structural models be an artifact of the radiation-induced reduction of the Mn(4) cluster that occurred during the collection of the X-ray diffraction data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2515374PMC
http://dx.doi.org/10.1021/bi060583aDOI Listing

Publication Analysis

Top Keywords

mn4 cluster
28
--> -->
20
psii particles
16
ftir difference
12
ligates ion
12
x-ray crystallographic
12
crystallographic structural
12
structural models
12
--> transitions
12
d1-glu189
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!