We previously found that phosphatidylglucoside (PtdGlc), a novel glycolipid expressed in HL60 cells, plays a role in forming signaling microdomains involved in cellular differentiation. Because cells contain minute levels of PtdGlc, pure PtdGlc is very difficult to isolate. Thus, its complete structure has never been assessed. To aid in analyzing PtdGlc, we generated a PtdGlc-specific monoclonal antibody, DIM21, by immunizing mice with detergent-insoluble membranes isolated from HL60 cells [Yamazaki, Y., et al. (2006) J. Immunol. Methods 311, 106-116]. DIM21 immunostaining of murine CNS tissues revealed stage- and cell type-specific localization of the DIM21 antigen during development, with especially high levels of expression in radial glia/astroglia. DIM21 immunostained cultured hippocampal astroglia in a punctate fashion. To characterize the structure of PtdGlc, we isolated DIM21 antigen from fetal brains. Using successive column chromatography, we purified two previously unrecognized glycolipids, PGX-1 and PGX-2, from embryonic day 21 rat brains. DIM21 reacted more strongly to PGX-2 than to PGX-1. Structural analyses with 600 MHz (1)H NMR, FT-ICR mass spectrometry, and GC revealed that PGX-1 is phosphatidyl beta-d-(6-O-acetyl)glucopyranoside and PGX-2 is phosphatidyl beta-d-glucopyranoside. The yields of PGX-1 and PGX-2 were approximately 250 +/- 150 and 440 +/- 270 nmol/g of dried brains, respectively. Surprisingly, both glycolipids were composed exclusively of C18:0 at the C1 position and C20:0 at the C2 position of the glycerol backbone. This saturated fatty acyl chain composition comprising a single molecular species rarely occurs in known mammalian lipids and provides a molecular basis for why PtdGlc resides in raftlike lipid microdomains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0606546DOI Listing

Publication Analysis

Top Keywords

single molecular
8
molecular species
8
saturated fatty
8
fatty acyl
8
hl60 cells
8
dim21 antigen
8
pgx-1 pgx-2
8
ptdglc
6
dim21
6
phosphatidylglucoside exists
4

Similar Publications

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!