Methylation in embryonic stem cells in vitro.

Methods Mol Biol

Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan.

Published: August 2006

Stem cells raise the possibility of regenerating failing body parts with new tissue. Before stem cells can safely fulfill their promise, many technical problems, including understanding the stem cell phenotype, must be overcome. DNA methylation, which is responsible for gene silencing and is associated with chromatin remodeling, is an epigenetic system that determines the specific characteristic of a variety of cells, including stem cells. Each cell type has a unique DNA methylation profile produced by varied loci-specific methylation. Investigation of such DNA methylation profiles provides a way of identifying pluripotent stem cells. Further, it is likely that analysis of the epigenetic status of stem cells may provide novel information regarding "sternness" within these populations.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59745-037-5:421DOI Listing

Publication Analysis

Top Keywords

stem cells
24
dna methylation
12
stem
7
cells
7
methylation
5
methylation embryonic
4
embryonic stem
4
cells vitro
4
vitro stem
4
cells raise
4

Similar Publications

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Backgroud: Oesophageal cancer ranks among the most prevalent malignant tumours globally, primarily consisting of oesophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSCs) accelerate the progression ESCC via their strong self-renewal and tumourigenic capabilities, presenting significant clinical challenges due to increased risks of recurrence and drug resistance.

Methods: Our previous study has reported WYC-209, which is capable of inducing apoptosis of CSCs in melanoma and hepatoma, but is ineffective against ESCC.

View Article and Find Full Text PDF

One of this century's most dramatic scientific developments is the reprogramming of stem cells in order to create organoids, that is, self-organizing 3D models that mimic the structure and function of human organs. This article considers whether brain organoids in particular might raise any new questions for law, now or in the near future. If complex human brain organoids were to become capable of consciousness or sentience, the current regulation of human tissue research, which protects the interests of tissue donors, might need to be supplemented in order to protect the interests of the tissue itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!