Recent decades have seen a significant increase in the incidence of diabetes mellitus. The number of individuals with diabetes is projected to reach 300 million by the year 2025. Diabetes is a leading cause of blindness, renal failure, lower limb amputation, and an independent risk factor for atherosclerotic cardiovascular disease (CVD)--a leading cause of death in Western society. Understanding the molecular and cellular mechanisms by which diabetes mellitus promotes atherosclerosis is essential to developing methods to treat and prevent diabetes-associated CVD. This review summarizes our current knowledge of the mechanisms by which diabetes may promote atherogenesis and specifically focuses on a novel pathway linking these 2 conditions. We hypothesize that the accumulation of intracellular glucosamine observed in conditions of chronic hyperglycaemia may promote atherogenesis via a mechanism involving dysregulated protein folding, activation of endoplasmic reticulum (ER) stress, and increased glycogen synthase kinase (GSK)-3 activity. The identification of this novel mechanism provides a promising hypothesis and multiple new targets for potential therapeutic intervention in the treatment of diabetes mellitus and accelerated atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1139/Y05-142DOI Listing

Publication Analysis

Top Keywords

diabetes mellitus
16
endoplasmic reticulum
8
reticulum stress
8
glycogen synthase
8
mechanisms diabetes
8
promote atherogenesis
8
diabetes
7
mechanisms linking
4
linking diabetes
4
mellitus
4

Similar Publications

Background: There are insufficient studies to determine whether sodium-glucose cotransporter type 2 inhibitors (SGLT2i) will help reduce early diabetic cardiomyopathy, especially in patients without documented cardiovascular disease.

Methods: We performed a single center, prospective observation study. A total of 90 patients with type 2 diabetes patients without established heart failure or atherosclerotic cardiovascular disease were enrolled.

View Article and Find Full Text PDF

Background: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).

Methods: A comprehensive and systematic search was conducted in Pubmed, Cochrane, Embase, and Web of Science up to July 02, 2024. The quality of the studies included was assessed.

View Article and Find Full Text PDF

Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.

View Article and Find Full Text PDF

Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.

Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.

View Article and Find Full Text PDF

Background: Studies of the world health organization indicated that Diabetes is on the rise. The occurrence of diabetes is steadily increasing everywhere, most markedly in the world's middle and low-income countries. The aim of this study is to explore the consequence of war on the sugar level of diabetic mellitus patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!