T lineage differentiation from human embryonic stem cells.

Proc Natl Acad Sci U S A

Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1678, USA.

Published: August 2006

AI Article Synopsis

  • Genetically manipulated human embryonic stem cells (hESC) can potentially revolutionize medicine by differentiating into various cell types.
  • Evidence shows that hESC can differentiate specifically into the T lymphoid lineage using coculture techniques and testing in immunodeficient mice.
  • The study suggests stable genetic changes remain during differentiation, highlighting the potential for treating T cell disorders with these modified hESC.

Article Abstract

Harnessing the ability of genetically manipulated human embryonic stem cells (hESC) to differentiate into appropriate lineages could revolutionize medical practice. These cells have the theoretical potential to develop into all mature cell types; however, the actual ability to develop into all hematopoietic lineages has not been demonstrated. Using sequential in vitro coculture on murine bone marrow stromal cells, and engraftment into human thymic tissues in immunodeficient mice, we demonstrate that hESC can differentiate through the T lymphoid lineage. Stable transgene expression was maintained at high levels throughout differentiation, suggesting that genetically manipulated hESC hold potential to treat several T cell disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544240PMC
http://dx.doi.org/10.1073/pnas.0604244103DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic stem
8
stem cells
8
genetically manipulated
8
hesc differentiate
8
lineage differentiation
4
differentiation human
4
cells
4
cells harnessing
4
harnessing ability
4

Similar Publications

Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.

Nat Commun

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.

The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.

View Article and Find Full Text PDF

Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!