Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA.

J Biol Chem

Membrane Enzymology Group, Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Published: October 2006

The ATPase subunit of the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis has a C-terminal extension, the tandem cystathionine beta-synthase (CBS) domain, which constitutes the sensor that allows the transporter to sense and respond to osmotic stress (Biemans-Oldehinkel, E., Mahmood, N. A. B. N., and Poolman, B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 10624-10629). C-terminal of the tandem CBS domain is an 18-residue anionic tail (DIPDEDEVEEIEKEEENK). To investigate the ion specificity of the full transporter, we probed the activity of inside-out reconstituted wild-type OpuA and the anionic tail deletion mutant OpuADelta12; these molecules have the tandem CBS domains facing the external medium. At a mole fraction of 40% of anionic lipids in the membrane, the threshold ionic strength for activation of OpuA was approximately 0.15, irrespective of the electrolyte composition of the medium. At equivalent concentrations, bivalent cations (Mg(2+) and Ba(2+)) were more effective in activating OpuA than NH(4)(+), K(+), Na(+), or Li(+), consistent with an ionic strength-based sensing mechanism. Surprisingly, Rb(+) and Cs(+) were potent inhibitors of wild-type OpuA, and 0.1 mM RbCl was sufficient to completely inhibit the transporter even in the presence of 0.2 M KCl. Rb(+) and Cs(+) were no longer inhibitory in OpuADelta12, indicating that the anionic C-terminal tail participates in the formation of a binding site for large alkali metal ions. Compared with OpuADelta12, wild-type OpuA required substantially less potassium ions (the dominant ion under physiological conditions) for activation. Our data lend new support for the contention that the CBS module in OpuA constitutes the ionic strength sensor whose activity is modulated by the C-terminal anionic tail.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604907200DOI Listing

Publication Analysis

Top Keywords

ionic strength
12
anionic tail
12
wild-type opua
12
ion specificity
8
opua
8
transporter opua
8
cbs domain
8
tandem cbs
8
rb+ cs+
8
transporter
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!