Syntheses and physicochemical properties of N-aryl-substituted imidazo-, pyrimido-, and 1,3-diazepino[2,1-f]purinediones are described. These derivatives were synthesized by the cyclization of 7-haloalkyl-8-bromo-1,3-dimethyl- or 1,3-dipropyl-xanthine derivatives with corresponding arylamines. The obtained compounds (1-40), which can be envisaged as sterically fixed and configurationally stable analogs of 8-styrylxanthines, were evaluated for their affinity to adenosine A(1) and A(2A) receptors, the receptor subtypes that are predominant in the brain. Selected compounds were additionally investigated for affinity to the A(2B) and A(3) receptor subtypes. Many of the compounds showed adenosine A(2A) receptor affinity at micromolar or submicromolar concentrations and were A(2A)-selective, for example, compound 23 with p-fluoro substituent displayed K(i) value of 0.147 microM at the rat A(2A) receptor and more than 170-fold-A(2A) selectivity, compound 17 with naphthyl substituent had K(i) value of 0.219 microM and a more than 114-fold-A(2A) selectivity. The compounds were somewhat weaker and less selective at the human receptor subtypes. Elongation of the dimethyl substituent to dipropyl in xanthine moiety improved affinity but reduced selectivity. 1,3-Dimethylimidazo-, pyrimido-, and diazepinopurinediones were evaluated in vivo as anticonvulsants in MES, ScMet, TTE tests and examined for neurotoxicity in mice (ip). Substances with pyrimido ring displayed protective activity in ScMet or in MES and ScMet tests, showing also neurotoxicity. The pyrimidine annelated ring is beneficial for both receptor affinity and anticonvulsant activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2006.06.052DOI Listing

Publication Analysis

Top Keywords

receptor subtypes
12
pyrimido- diazepinopurinediones
8
adenosine a2a
8
a2a receptor
8
receptor affinity
8
mes scmet
8
receptor
6
affinity
5
synthesis biological
4
biological activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!