The structural effects of the antiepileptic drug carbamazepine (CBZ) on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that CBZ interacts with red cell membranes: (a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that CBZ perturbed a class of lipids found in the outer moiety of the erythrocyte membrane; (b) in isolated unsealed human erythrocytes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the membrane lipid bilayer; (c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the preferential insertion of CBZ in the outer monolayer of the red cell membrane. The effects of the drug detected in the present work were observed at concentrations of the order of those currently appearing in serum when it is therapeutically administered. This is the first time that toxic effects of carbamazepine on the human erythrocyte membrane have been described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2006.05.010 | DOI Listing |
PLoS Pathog
January 2025
Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France.
Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.
View Article and Find Full Text PDFEgypt J Immunol
January 2025
Department of Clinical Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China.
Single-cell sequencing of lineage negative (Lin-) cells from patients with myelodysplastic syndromes (MDS) revealed a reduction in ferritin heavy chain 1 (FTH1) levels, yet the significance of this decrease in FTH1 in the pathophysiology of MDS remains unclear. In this study, we evaluated the role of FTH1 in patients with MDS. The mRNA expression of FTH1 in GlycoA nucleated erythrocytes from MDS patients was significantly lower than that in control group.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Buchinger Wilhelmi Clinic, Überlingen, Germany.
Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!