Regulation of Na(+)-dependent glutamate transport was studied in isolated luminal and abluminal plasma membranes derived from the bovine blood-brain barrier. Abluminal membranes have Na(+)-dependent glutamate transporters while luminal membranes have facilitative transporters. This organization allows glutamate to be actively removed from brain. gamma-Glutamyl transpeptidase, the first enzyme of the gamma-glutamyl cycle (GGC), is on the luminal membrane. Pyroglutamate (oxoproline), an intracellular product of GGC, stimulated Na(+)-dependent transport of glutamate by 46%, whereas facilitative glutamate uptake in luminal membranes was inhibited. This relationship between GGC and glutamate transporters may be part of a regulatory mechanism that accelerates glutamate removal from brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2006.06.097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!