Insulin can generate oxygen free radicals. Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, exert a powerful antioxidant effect. The present study aimed to clarify the mechanisms through which insulin generates free radicals and to assess whether pravastatin modulates such effects. In cultured skin fibroblasts from human volunteers exposed to high insulin concentration, either in the presence or in the absence of pravastatin, insulin induced translocation of the p47(phox) subunit of NAD(P)H oxidase from the cytosol to the membrane and generation of radical oxygen species through a PKC delta-dependent mechanism. The insulin-induced translocation of p47(phox) was PKC delta dependent and attenuated by pravastatin, but independent of the activation of Akt and Rac1. Insulin-induced Akt phosphorylation was increased by pravastatin and ERK1/2 phosphorylation attenuated. The present study demonstrates a novel mechanism by which insulin stimulates the generation of free radicals in human fibroblasts, ex vivo. It involves phosphatidylinositol 3-kinase, PKC delta, and p47(phox) translocation and promotes ERK1/2 phosphorylation. Pravastatin inhibited radical oxygen species production by inhibiting PKC delta. These observations offer a robust explanation for the positive effects of pravastatin treatment in patients with insulin resistance syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.015DOI Listing

Publication Analysis

Top Keywords

free radicals
16
pkc delta
12
insulin generates
8
generates free
8
radicals human
8
human fibroblasts
8
fibroblasts vivo
8
pravastatin insulin
8
translocation p47phox
8
radical oxygen
8

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Carthamus tinctorius L. (Safflower) is widely used in traditional Japanese, Korean, Chinese, Arabian, and Persian herbal medicine to treat metabolic diseases. This study aimed to characterize C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!