Functional magnetic resonance imaging (fMRI) of blood oxygen level dependent (BOLD) haemodynamic responses was used to study the effects of the noxious substance capsaicin on whole brain activation in isofluorane anaesthetised rats. Rats (n=8) received intradermal injection of capsaicin (30 microg/5 microl), or topical cream (0.1%) capsaicin and BOLD responses were acquired for up to 120 min. Effects of capsaicin versus placebo cream treatment on the BOLD response to a 15 g mechanical stimulus applied adjacent to the site of cream application were also studied. Both injection and cream application of capsaicin activated brain areas involved in pain processing, including the thalamus and periaqueductal grey (PAG) (p<0.05, corrected for multiple comparisons). Capsaicin also produced increases in BOLD signal intensity in other regions that contribute to pain processing, such as the parabrachial nucleus and superior colliculus. Mechanical stimulation in capsaicin-treated rats, but not placebo-treated rats, induced a significant decrease in BOLD signal intensity in the PAG (p<0.001). These data demonstrate that the noxious substance capsaicin produces brain activation in the midbrain regions and reveals the importance of the PAG in central sensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2006.06.012 | DOI Listing |
Cell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.
View Article and Find Full Text PDFMed Klin Intensivmed Notfmed
January 2025
Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
Intravenous thrombolysis (IVT) and endovascular therapy (EVT) are the cornerstones of acute ischemic stroke treatment. While IVT has been an integral part of acute therapy since the mid-1990s, EVT has evolved as one of the most effective treatments in medicine over the past decade. Traditionally, systemic thrombolysis has been performed with alteplase (rtPA).
View Article and Find Full Text PDFNeuropsychopharmacology
January 2025
Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Frederiksberg, Denmark.
Individuals with bipolar disorder (BD) show heterogeneity in clinical, cognitive, and daily functioning characteristics, which challenges accurate diagnostics and optimal treatment. A key goal is to identify brain-based biomarkers that inform patient stratification and serve as treatment targets. The objective of the present study was to apply a data-driven, multivariate approach to quantify the relationship between multimodal imaging features and behavioral phenotypes in BD.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!