The retrograde axonal transport mechanism of motor neurons has been exploited to deliver the gene encoding Glial cell line-derived neurotrophic factor (GDNF) into the central nervous system to provide trophic support following injury. A nonviral gene delivery system, consisting of a monoclonal antibody (MC192) that binds the neurotrophic receptor, p75(NTR), coupled to poly-L-lysine, was constructed and used to deliver the gene via a receptor-mediated mechanism. The MC192-poly-l-lysine/pGDNF complex was injected into the hind limb of newborn rats to allow gene expression within motor neurons prior to sciatic nerve transection. In adult rats, the gene delivery complex was administrated in gel foam placed on a transected hypoglossal nerve. We show that the delivered construct is internalized following binding to p75(NTR) and is transported into the brain and spinal cord, bypassing the blood-brain barrier. The presence of the GDNF transgene and its transcript could be detected for up to 8 weeks in spinal cord and brain stem. Expression of the GDNF protein rescued 38% of the targeted motor neurons 1 week postinjury in newborn rats while the survival rate in control group was below 12%. In adult rats, neuronal death induced by axotomy was almost completely reversed by the introduction of the transgene (95 +/- 3%). Thus, the significant functional outcomes of this novel gene delivery system are demonstrated both in postnatal and adult motor neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2006.05.027 | DOI Listing |
Biol Open
January 2025
Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.
View Article and Find Full Text PDFAsian Pac Isl Nurs J
January 2025
Nursing Care Research Center, Clinical Sciences Institute, Nursing Faculty, Baqiyatallah University of Medical Sciences, Vanak Square, Tehran, Iran, 98 9127297199.
Background: Neuromuscular disorders (NMDs) constitute a heterogeneous group of disorders that affect motor neurons, neuromuscular junctions, and muscle fibers, resulting in symptoms such as muscle weakness, fatigue, and reduced mobility. These conditions significantly affect patients' quality of life and impose a substantial burden on caregivers. Spinal muscular atrophy (SMA) is a relatively common NMD in children that presents in various types with varying degrees of severity.
View Article and Find Full Text PDFBioact Mater
May 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.
View Article and Find Full Text PDFiScience
January 2025
Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China.
Learned action sequences are suggested to be organized hierarchically, but how the various hierarchical levels are processed by different cortical regions remains largely unknown. By training monkeys to perform heterogeneous saccade sequences, we investigated the role of the dorsolateral prefrontal cortex (DLPFC) and the lateral intraparietal cortex (LIP) in sequence planning and execution. The electrophysiological recording revealed that sequence-level initiation information was mostly signaled by DLPFC neurons, whereas subsequence-level transition was largely encoded by LIP neurons.
View Article and Find Full Text PDFActa Naturae
January 2024
Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation.
Amyotrophic lateral sclerosis (ALS) is a severe disease of the central nervous system (CNS) characterized by motor neuron damage leading to death from respiratory failure. The neurodegenerative process in ALS is characterized by an accumulation of aberrant proteins (TDP-43, SOD1, etc.) in CNS cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!