The use of psychostimulants during adolescence and early adult life has increased in recent years. It is known that these substances affect the sensory systems, and the optic nerve has been shown to be a target tissue. This work was conducted to evaluate the effects of prenatal exposure to methamphetamine (MA) on the developmental pattern of the rat optic nerve. Pregnant female rats were given 5 mg/kg body weight/day MA, s.c., in 0.9% saline from gestational days 8 to 22. The control group was injected with an isovolumetric dose of 0.9% saline. Animal model parameters, such as gestational body weight evolution, food intake and pups parameters were registered. The offspring were sacrificed at postnatal days (PND) 7, 14 and 21. Morphometric analyses were performed at light and electron microscopic levels on optic nerve cross sections; parameters measured included optic nerve diameter and area, axonal density, total number of axons and myelin thickness. Myelin basic protein (MBP) was measured by western blotting in optic nerve samples at PND14 and PND21. The animal model parameters, such as maternal and pup weight, showed no significant differences between MA and control groups. Optic nerve diameter was smaller at PND7 in the male MA group and in both male and female MA groups at PND21. The mean cross-sectional area was smaller at PND14 in the male MA group and in both male and female groups at PND21. The total number of myelinated axons did not vary between groups at any of the studied ages. The myelin thickness of the axons in MA-treated females was thinner when compared with the respective control group at PND21. No other differences were found concerning myelin thickness. There was a reduction of MBP protein expression in MA-injected females at PND14 and PND21. The combined results suggest that prenatal exposure to MA affects the myelination process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2006.05.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!