Wedge polishing was used to prepare one-dimensional Si n-p junction and Si p-channel metal-oxide-silicon field effect transistor (pMOSFET) samples for precise and quantitative electrostatic potential analysis using off-axis electron holography. To avoid artifacts associated with ion milling, cloth polishing with 0.02-microm colloidal silica suspension was used for final thinning. Uniform thickness and no significant charging were observed by electron holography analysis for samples prepared entirely by this method. The effect of sample thickness was investigated and the minimum thickness for reliable results was found to be approximately 160 nm. Below this thickness, measured phase changes were smaller than expected. For the pMOSFET sample, quantitative analysis of two-dimensional electrostatic potential distribution showed that the metallurgical gate length (separation between two extension junctions) was approximately 54 nm, whereas the actual gate length was measured to be approximately 70 nm by conventional transmission electron microscopy. Thus, source and drain junction encroachment under the gate was 16 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927606060351DOI Listing

Publication Analysis

Top Keywords

precise quantitative
8
electrostatic potential
8
electron holography
8
gate length
8
sample preparation
4
preparation precise
4
electron
4
quantitative electron
4
electron holographic
4
analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!