The murine transmembrane glycoprotein CD83 is an important regulator for both thymic T cell maturation and peripheral T cell response. CD83 deficiency leads to a block in the thymic maturation of CD4-positive T cells, and interference with peripheral CD83/CD83 ligand interaction by addition of soluble CD83 suppresses immune responses in vivo and in vitro. Here we report the generation of a mouse transgenic for a fusion protein consisting of the extracellular domain of murine CD83 fused to the constant part of human IgG1 heavy chain. Thymic selection of CD4-positive T cells was unchanged in CD83Ig transgenic and in CD83Ig/OT-2 double-transgenic mice. However, thymic and peripheral CD4-positive T cells derived from CD83Ig/OT-2 transgenic mice displayed a reduced cytokine response to antigenic stimulation in vitro, whereas CD83Ig/OT-1-derived CD8-positive T cells showed normal cytokine secretion. The T cell defect was relevant in vivo, since a sub-lethal infection with Trypanosoma cruzi led to an increased parasitemia and reduced survival rate of CD83Ig transgenic mice compared to wild-type C57BL/6 mice. In contrast, in vivo application of recombinant CD83Ig did not result in an increase in parasitemia. Taken together our data suggest that thymic selection in the presence of CD83Ig leads to an intrinsic T cell defect of CD4-positive T cells resembling the phenotype described for CD4-positive T cells derived from CD83-deficient mouse strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.200636068 | DOI Listing |
Int J Mol Sci
December 2024
IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany.
Immunosuppression is one key feature of mesenchymal stromal cells (MSCs) that has high expectations for therapeutic use. The influence of pro-inflammatory stimuli can modify the characteristics of MSCs and enhance immunosuppressive properties. The local postoperative environment contains cytokines, MSCs, and immune cells in high quantities, and their mutual influence is still unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Purpose: To explore the effects of recombinant human growth hormone (r-hGH) on inflammatory mediators, immune cells and prognosis in severe neurosurgical patients.
Methods: From August 2020 to June 2021, a total of 236 patients who admitted to the neurosurgical intensive care unit (NSICU) were retrospectively analyzed. The patients were divided into GH group (97 cases) and nGH group (139 cases) according to whether they received r-hGH treatment.
PLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFChaos
January 2025
Department of Mathematics, Indian Institute of Technology Patna, Patna 801103, India.
Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!