IL-2 is crucial for the production of CD4(+)CD25(+) T regulatory (Treg) cells while important for the generation of effective T cell-mediated immunity. How to exploit the capacity of IL-2 to expand Treg cells, while restraining activation of T effector (Teff) cells, is an important and unanswered therapeutic question. Dexamethasone (Dex), a synthetic glucocorticoid steroid, has been reported to suppress IL-2-mediated activation of Teff cells and increase the proportion of Treg cells. Thus, we hypothesized that glucocorticoids may be useful as costimulants to amplify IL-2-mediated selective expansion of Treg cells. We show in this study that short-term simultaneous administration of Dex and IL-2 markedly expanded functional suppressive Foxp3(+)CD4(+)CD25(+) T cells in murine peripheral lymphoid tissues. In a myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) mouse model, we observed that splenic CD4(+)CD25(+) T cells failed to suppress the proliferation of CD4(+)CD25(-) T cells. Pretreatment with Dex/IL-2 remarkably increased the proportion of CD4(+)FoxP3(+) cells and partially restored the function of splenic CD4(+)CD25(+) T cells, and inhibited the development of EAE. Therefore, the combination of glucocorticoid and IL-2, two currently used therapeutics, may provide a novel approach for the treatment of autoimmune diseases, transplant rejection and graft-vs.-host disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.200635873 | DOI Listing |
Pulmonology
December 2025
Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.
Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.
Postmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.
View Article and Find Full Text PDFFront Immunol
December 2024
Immune Tolerance Laboratory, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney Australia an Ingham Institute, Liverpool, NSW, Australia.
J Cell Physiol
January 2025
Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.
View Article and Find Full Text PDFAdv Mater
January 2025
Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China.
Immunogenic cell death (ICD)-mediated immunization strategies have great potential against breast cancer. However, traditional strategies neglect the increase in the immunosuppressive metabolite, adenosine (ADO), during ICD, leading to insufficient therapeutic outcomes. In this study, it is found that the adenosine A2A receptor (A2AR) is significantly expressed in breast cancer and positively associated with regulatory T (Treg) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!