Conformations of the title compounds were examined using DFT calculations and NBO analysis in order to find the origins of their conformational preferences. The most stable conformations were TBC and TCBtype-1 for the 2,4- and 3,5-benzodioxonine derivatives, respectively. In both of these conformations the acetal moiety adopts the g+/-g+/- geometry. The NBO analysis yielded values of the stabilization energy associated with the stereoelectronic nO --> sigmaC-O* interactions that were highest for conformations other than the global minima. Conformers displaying the strongest interactions followed different patterns of atom arrangement within the acetal moiety, namely g+g-, and those in which one or both of the torsion angles within the C-O-C-O-C segment were close to 90 degrees . Steric repulsion caused by alkyl substituents at the anomeric carbon was found to influence the strength of the nO --> sigmaC-O* stabilization through modification of bond lengths and torsion angles. The adopted ground-state conformations result from accommodation of steric repulsions and stabilizing stereoelectronic interactions. It was shown that DFT calculations of conformational preferences of acetals together with GIAO prediction of 13C chemical shifts should be a useful methodology for studies on conformation and conformational equilibria of acetals in solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo060422c | DOI Listing |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France.
Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.
View Article and Find Full Text PDFArthritis Res Ther
January 2025
Department of Biomedical Sciences, Humanitas University, Via R Levi Montalcini 4, Pieve Emanuele, Milan, 20090, Italy.
Background: There is still a significant proportion of patients with rheumatoid arthritis (RA) in whom multiple therapeutic lines are ineffective. These cases are defined by the EULAR criteria as Difficult-to-Treat RA (D2T-RA) for which there is limited knowledge of predisposing factors.
Objective: To identify the clinical features associated with D2T-RA in real-life practice.
Implement Sci Commun
January 2025
Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, IL, Chicago, USA.
Background: Studies have demonstrated that standardizing labor induction (IOL), often with the use of protocols, may reduce racial inequities in obstetrics. IOL protocols are complex, multi-component interventions. To target identified implementation barriers, audit and feedback (A&F) was selected as an implementation strategy.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!