Reported herein is a combination of experimental and DFT/TDDFT theoretical investigations of the ground and excited states of 1,4,8,11,15,18,22,25-Octabutoxyphthalocyaninato-nickel(II), NiPc(BuO)(8), and the dynamics of its deactivation after excitation into the S(1)(pi,pi) state in toluene solution. According to X-ray crystallographic analysis NiPc(BuO)(8) has a highly saddled structure in the solid state. However, DFT studies suggest that in solution the complex is likely to flap from one D(2)(d)-saddled conformation to the opposite one through a D(4)(h)-planar structure. The spectral and kinetic changes for the complex in toluene are understood in terms of the 730 nm excitation light generating a primarily excited S(1) (pi,pi) state that transforms initially into a vibrationally hot (3)(d(z)2,d(x)2(-)(y)2) state. Cooling to the zeroth state is complete after ca. 8 ps. The cold (d,d) state converted to its daughter state, the (3)LMCT (pi,d(x)2(-)(y)2), which itself decays to the ground state with a lifetime of 640 ps. The proposed deactivation mechanism applies to the D(2)(d)-saddled and the D(4)(h)-planar structure as well. The results presented here for NiPc(BuO)(8) suggest that in nickel phthalocyanines the (1,3)LMCT (pi,d(x)2(-)(y)2) states may provide effective routes for radiationless deactivation of the (1,3)(pi,pi) states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0457444 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!