Enhancing urban infrastructure investment planning practices for a changing climate.

Water Sci Technol

Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.

Published: November 2006

Climate change raises many concerns for urban water management because of the effects on all aspects of the hydrological cycle. Urban water infrastructure has traditionally been designed using historical observations and assuming stationary climatic conditions. The capability of this infrastructure, whether for storm-water drainage, or water supply, may be over- or under-designed for future climatic conditions. In particular, changes in the frequency and intensity of extreme rainfall events will have the most acute effect on storm-water drainage systems. Therefore, it is necessary to take future climatic conditions into consideration in engineering designs in order to enhance water infrastructure investment planning practices in a long time horizon. This paper provides the initial results of a study that is examining ways to enhance urban infrastructure investment planning practices against changes in hydrologic regimes for a changing climate. Design storms and intensity-duration-frequency curves that are used in the engineering design of storm-water drainage systems are developed under future climatic conditions by empirically adjusting the general circulation model output, and using the Gumbel distribution and the Chicago method. Simulations are then performed on an existing storm-water drainage system from NE Calgary to investigate the resiliency of the system under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2006.292DOI Listing

Publication Analysis

Top Keywords

climatic conditions
16
storm-water drainage
16
infrastructure investment
12
investment planning
12
planning practices
12
future climatic
12
urban infrastructure
8
changing climate
8
climate change
8
urban water
8

Similar Publications

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

School closures are a safe and important strategy for preventing infectious diseases in schools. However, the effects of school closures have not been fully demonstrated, and prolonged school closures have a negative impact on students and communities. This study evaluated class-specific school closure strategies to prevent the spread of seasonal influenza and determine the optimal timing and duration.

View Article and Find Full Text PDF

Role of micronutrients in production and reproduction of farm animals under climate change scenario.

Trop Anim Health Prod

January 2025

School of Molecular Diagnostics, Prophylaxis, and Nanobiotechnology, ICAR- Indian Institute of Agricultural Biotechnology, Garkhtanga, Ranchi, 834003, Jharkhand, India.

Climate change poses significant challenges to livestock production worldwide. Wherein, it affects communities in developing nations primarily dependent on agriculture and animal husbandry. Its direct and indirect deleterious effects on agriculture and animal husbandry includes aberrant changes in weather patterns resulting in disturbed homeorhetic mechanism of livestock vis a vis indirectly affecting nutrient composition of feed and fodder.

View Article and Find Full Text PDF

The common bean (Phaseolus vulgaris L.) plays a significant economic and social role in Brazil. However, the national average yield remains relatively low, largely because most bean cultivation is undertaken by small-scale farmers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!