Dysregulated Notch signaling accounts for the majority of acute T lymphoblastic leukemia/lymphoma (T-ALL) cases in humans. Here, we characterize lymphomas from Notch1IC transgenic rats, which develop T-ALL shortly after weaning, and show that they display a number of previously undocumented features. Starting from monoclonal thymic tumors, the CD4(+)CD8alphaalpha(+) lymphoma cells infiltrate the bone marrow and then spread to secondary lymphoid and non-lymphoid organs. However, major hallmarks of T-ALL cells in other murine models and human patients, such as constitutive NF-kappaB activity and increased levels of anti-apoptotic proteins, are remarkably absent in Notch1IC lymphomas. In contrast, CD30, a classic marker of Hodgkin lymphomas, is overexpressed in these tumors. Intriguingly, enforced Notch1 signaling up-regulates expression of Notch3, which has also been implicated in the pathogenesis of T-ALL. By blocking endogenous Notch signaling, we could demonstrate that Notch1IC is sufficient to induce sustained preTCR expression in transgenic thymocytes but not for their progression to the double-positive stage. This suggests that other Notch activities may also contribute to the phenotype of the transgenic rats. In summary, we anticipate this new animal model will help to further elucidate the role of Notch1 in the pathogenesis of T-ALL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200535791DOI Listing

Publication Analysis

Top Keywords

transgenic rats
12
acute lymphoblastic
8
lymphomas notch1ic
8
notch1ic transgenic
8
notch signaling
8
pathogenesis t-all
8
t-all
5
unexpected features
4
features acute
4
lymphomas
4

Similar Publications

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Several potent carcinogenic nitrosamines, including N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA), induce micronuclei in the micronucleated hepatocyte (MNHEP) assay but not in the micronucleated reticulocyte (MNRET) assay. However, the MNHEP assay is not as frequently used as the MNRET assay for evaluating in vivo genotoxicity. The present study evaluated MN formation in the liver of Big Blue transgenic rats exposed to four small-molecule nitrosamines, NDMA, N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisoporpylamine (NEIPA), and N-nitrosomethylphenylamine (NMPA), using a repeat-dose protocol typically used for in vivo mutagenicity studies.

View Article and Find Full Text PDF

We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.

View Article and Find Full Text PDF

Restraint to Induce Stress in Mice and Rats.

J Vis Exp

December 2024

Department of Psychological and Brain Sciences, Fairfield University;

Across all animal species, exposure to stressful conditions induces stress responses. One method to study the effects of stress using rodent models is the restraint stress procedure. Restraint stress has been used for decades to investigate changes in physiology, genetics, neurobiology, immunology, and other systems impacted by stress.

View Article and Find Full Text PDF

Paradoxical attenuation of early amyloid-induced cognitive impairment and synaptic plasticity in an aged APP/Tau bigenic rat model.

Acta Neuropathol Commun

December 2024

Department of Pharmacology & Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler Room 1210, Montreal, H3G 1Y6, Canada.

Article Synopsis
  • The study investigates how the combination of amyloid beta and tau pathologies affects neurodegeneration in Alzheimer's disease using a new transgenic rat model (McGill-R-APPxhTau).
  • Initial findings suggest that early exposure to both amyloid and phosphorylated tau can temporarily improve synaptic plasticity and cognitive functions, contrasting with the negative effects observed in models with only one of these pathologies.
  • However, as the disease progresses, the combined presence of amyloid and tau leads to severe cognitive decline, increased neuroinflammation, and neuronal loss, indicating that the protective effects of tau are short-lived.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!