Multiple types of Na(+) currents mediate action potential electrogenesis in small neurons of mouse dorsal root ganglia.

Pflugers Arch

Department of Neurophysiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan.

Published: October 2006

AI Article Synopsis

  • Small neurons in the dorsal root ganglion (DRG) express various voltage-gated Na(+) channel subtypes, with two being resistant to tetrodotoxin (TTX), affecting action potential generation.
  • Research using wild-type and Na(V)1.8 knock-out mice showed that action potentials in small DRG neurons primarily rely on TTX-R/slow Na(+) current, while TTX-S/fast Na(+) current functions differently under varying conditions.
  • TTX-R/persistent Na(+) current, mediated by Na(V)1.9, plays a critical role in subthreshold excitability and can influence action potentials when its current amplitude increases.

Article Abstract

Small (<25 microm in diameter) neurons of the dorsal root ganglion (DRG) express multiple voltage-gated Na(+) channel subtypes, two of which being resistant to tetrodotoxin (TTX). Each subtype mediates Na(+) current with distinct kinetic property. However, it is not known how each type of Na(+) channel contributes to the generation of action potentials in small DRG neurons. Therefore, we investigated the correlation between Na(+) currents in voltage-clamp recordings and corresponding action potentials in current-clamp recordings, using wild-type (WT) and Na(V)1.8 knock-out (KO) mice, to clarify the action potential electrogenesis in small DRG neurons. We classified Na(+) currents in small DRG neurons into three categories on the basis of TTX sensitivity and kinetic properties, i.e., TTX-sensitive (TTX-S)/fast Na(+) current, TTX-resistant (TTX-R)/slow Na(+) current, and TTX-R/persistent Na(+) current. Our concurrent voltage- and current-clamp recordings from the same neuron revealed that the action potentials in WT small DRG neurons were mainly dependent on TTX-R/slow Na(+) current mediated by Na(V)1.8. It was surprising that a large portion of TTX-S/fast Na(+) current was switched off in WT small DRG neurons due to a hyperpolarizing shift of the steady-state inactivation (h (infinity)), whereas in KO small DRG neurons which are devoid of TTX-R/slow Na(+) current, the action potentials were generated by TTX-S/fast Na(+) current possibly through a compensatory shift of h (infinity) in the positive direction. We also confirmed that TTX-R/persistent Na(+) current mediated by Na(V)1.9 actually regulates subthreshold excitability in small DRG neurons. In addition, we demon strated that TTX-R/persistent Na(+) current can carry an action potential when the amplitude of this current was abnormally increased. Thus, our results indicate that the action potentials in small DRG neurons are generated and regulated with a combination of multiple mechanisms that may give rise to unique functional properties of small DRG neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-006-0104-3DOI Listing

Publication Analysis

Top Keywords

multiple types
4
types na+
4
na+ currents
4
currents mediate
4
mediate action
4
action potential
4
potential electrogenesis
4
electrogenesis small
4
small neurons
4
neurons mouse
4

Similar Publications

Spatiotemporal patterns in active four-state Potts models.

Sci Rep

January 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.

Many types of spatiotemporal patterns have been observed under nonequilibrium conditions. Cycling through four or more states can provide specific dynamics, such as the spatial coexistence of multiple phases. However, transient dynamics have only been studied by previous theoretical models, since absorbing transition into a uniform phase covered by a single state occurs in the long-time limit.

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.

View Article and Find Full Text PDF

Spatially resolved omics (SRO) technologies enable the identification of cell types while preserving their organization within tissues. Application of such technologies offers the opportunity to delineate cell-type spatial relationships, particularly across different length scales, and enhance our understanding of tissue organization and function. To quantify such multi-scale cell-type spatial relationships, we present CRAWDAD, Cell-type Relationship Analysis Workflow Done Across Distances, as an open-source R package.

View Article and Find Full Text PDF

Flutter is an extremely significant academic topic in both aerodynamics and aircraft design. Since flutter can cause multiple types of phenomena including bifurcation, period doubling, and chaos, it becomes one of the most unpredictable instability phenomena. The complexity of modeling aeroelasticity of high flexibility wings will be substantially simplified by investigating the prospect of system identification techniques to forecast flutter velocity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!