Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens.

J Neurophysiol

Department of Experimental Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Published: October 2006

We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus accumbens microcircuitry, may lead to developmental changes. First, spontaneous firing activity of cholinergic interneurons in the nucleus accumbens was recorded in vitro. Firing patterns in the Pitx3-deficient mice were more variable and intrinsically different from those observed in wild-type mice. Next, to test whether the irregular firing patterns observed in mutant mice affected the endogenous nicotinic modulation of the GABAergic input of medium spiny neurons, we recorded spontaneous GABAergic inputs to these cells before and after the application of the nicotinic receptor blocker mecamylamine. Effects of mecamylamine were found in slices of either genotype, but in a rather inconsistent manner. Possibly this was attributable to heterogeneity in firing of nearby cholinergic interneurons. Thus paired recordings of cholinergic interneurons and medium spiny neurons were performed to more precisely control the experimental conditions of the cholinergic modulation of GABAergic synaptic transmission. We found that controlling action potential firing in cholinergic neurons leads to a conditional increase in GABAergic input frequency in wild-type mice but not in Pitx3-deficient mice. We conclude that Pitx3-deficient mice have neural adaptations at the level of the nucleus accumbens microcircuitry that in turn may have behavioral consequences. It is discussed to what extent dopamine release in the nucleus accumbens may be a long-term gating mechanism leading to alterations in cholinergic transmission in the nucleus accumbens, in line with previously reported neural adaptations found as consequences of repeated drug treatment in rodents.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00333.2006DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
24
modulation gabaergic
12
cholinergic interneurons
12
pitx3-deficient mice
12
pitx3 deficiency
8
cholinergic modulation
8
transmission nucleus
8
accumbens microcircuitry
8
firing patterns
8
wild-type mice
8

Similar Publications

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Background/objectives: Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease and contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with combined antiretroviral therapy (cART), HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin.

View Article and Find Full Text PDF

Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Curr Biol

January 2025

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

The Comorbidity of Depression and Diabetes Is Involved in the Decidual Protein Induced by Progesterone 1 (Depp1) Dysfunction in the Medial Prefrontal Cortex.

Metabolites

January 2025

Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Background: There is a high rate of depressive symptoms such as irritability, anhedonia, fatigue, and hypersomnia in patients with type 2 diabetes mellitus (T2DM). However, the causes and underlying mechanisms of the comorbidity of depression and diabetes remain unknown.

Methods: For the first time, we identified Decidual protein induced by progesterone 1 (Depp1), also known as DEPP autophagy regulator 1, as a hub gene in both depression and T2DM models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!