Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin.

J Biol Chem

Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA.

Published: September 2006

AI Article Synopsis

  • Researchers studied the relationship between nucleic acid metabolism and the ubiquitin-proteasome pathway in yeast, revealing important interactions.
  • They performed genome-wide chromatin immunoprecipitation analyses on 6400 yeast genes, finding that proteasome components are linked to most genes, often correlating with gene expression levels.
  • The results indicate that while the intact 26 S proteasome is present on most genes, some genes are associated only with either the 20 S or 19 S subcomplex, suggesting they may function independently.

Article Abstract

It has recently become clear that various aspects of nucleic acid metabolism and the ubiquitin-proteasome pathway intersect in several direct and important ways. To begin to assess the scope of some of these activities in the yeast Saccharomyces cerevisiae, we assessed the physical and functional association of proteasomal proteins from both the 20 S core and 19 S regulatory particles with approximately 6400 yeast genes. Genome-wide chromatin immunoprecipitation analyses revealed that proteasome substituents are associated with the majority of yeast genes. Many of these associations correlated strongly with expression levels and the presence of RNA polymerase II. Although the data support the presence of the intact 26 S proteasome on most genes, several hundred yeast genes were cross-linked to either the 20 or 19 S complex but not both, consistent with some degree of independent function for the proteasomal subcomplexes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604706200DOI Listing

Publication Analysis

Top Keywords

yeast genes
12
association proteasomal
8
proteasomal proteins
8
yeast
5
widespread non-identical
4
non-identical association
4
proteins yeast
4
yeast chromatin
4
chromatin clear
4
clear aspects
4

Similar Publications

Cell integrity limits ploidy in budding yeast.

G3 (Bethesda)

January 2025

Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.

View Article and Find Full Text PDF

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.

View Article and Find Full Text PDF

Antioxidants, both glutathione (GSH) and astaxanthin (AX), possess beneficial applications in animal growth and antioxidant properties. In this study, three experimental diets with isoproteic and isolipidic were formulated, the control diet (CON), the control diet added with 0.03% Carophyll Pink (contains 10% AX), the control diet added with 0.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!