Effect of docosahexaenoic acid on tissue targeting and metabolism of plasma lipoproteins.

Prostaglandins Leukot Essent Fatty Acids

Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, MD 20892-9410, USA.

Published: September 2006

We examined the effect of the docosahexaenoic acid (DHA) content of lipoproteins on their metabolism in vivo by a radioisotope labeling and tracking method. Purified HDL and LDL were labeled with (3)H-cholesteryl oleate tracer. To mimic dietary-related changes in fatty acid composition of lipoproteins, we incorporated lipids acylated with either DHA, arachidonic (AA) or oleic (OA) acid to phosphatidylcholine (didocosahexaenoylphosphatidylcholine (di22:6-PC), diarachidonoylphosphatidylcholine (di20:4-PC) and dioleoylphosphatidylcholine (di18:0-PC), respectively) into the purified particles. The lipids, at the amount added, did not cause detectable alterations in the morphology of the lipoproteins. Levels of radiotracers in blood and in several target tissues such as brain, heart, liver, muscle and adipose were determined at 1.5, 3 and 24h after intravenous injection into C57Bl/6J mice. No statistically significant differences were detected in the tissue distribution of tracers introduced into HDL enriched in DHA, compared to particles enriched with OA. In contrast, we found a significantly higher proportion of radiolabel associated with LDL enriched in DHA in heart, brown adipose and brain tissues. The uptake of labels associated with DHA containing LDL nearly doubled for heart and brown adipose tissues at 1.5 and 3h, and it was 30% higher for brain tissues at 24h. The tissue distribution of labels from the same particles enriched in AA or OA did not show a statistically significant difference from unaltered control lipoproteins. These findings point to the possible role of DHA in the regulation of LDL metabolism and involvement of the lipoproteins in transport of n-3 PUFA to target organs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2006.05.009DOI Listing

Publication Analysis

Top Keywords

docosahexaenoic acid
8
tissue distribution
8
enriched dha
8
particles enriched
8
heart brown
8
brown adipose
8
brain tissues
8
lipoproteins
6
dha
6
acid tissue
4

Similar Publications

Egg yolk phospholipids are commercially valuable products that are beneficial to human health. Previous research on phospholipids in egg yolk mainly focuses on phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), and fatty acid compositions, and neglects the esterification position and other bioactive phospholipids. This study found a total of 19 classes of phospholipids and 275 subclasses using lipidomics.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

Enhanced inflammatory and immune responses have been observed in patients with major depressive disorder, pointing to anti-inflammatory substances as potential seeds for developing novel antidepressants. Omega-3 polyunsaturated fatty acid metabolites, such as resolvin D and E series, maresins, and protectins (collectively known as specialized pro-resolving mediators) demonstrate anti-inflammatory effects. This study examined the antidepressant-like effects of maresin-1 (MaR1) on lipopolysaccharide (LPS)-induced depression-like behaviors in mice.

View Article and Find Full Text PDF

The Optimal Dosage and Duration of Omega-3 Polyunsaturated Fatty Acid Supplementation in Heart Failure Management: Evidence from a Network Meta-Analysis.

Adv Nutr

January 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan. Electronic address:

Heart failure is a progressive condition associated with a high mortality rate. Despite advancements in treatment, many patients continue to experience less-than-ideal outcomes. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been studied as a potential supplementary therapy for heart failure, but the optimal dosage and duration of supplementation remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!