The spinal synaptic plasticity is associated with a central sensitization of nociceptive input, which accounts for the generation of hyperalgesia in chronic pain. However, how group I metabotropic glutamate receptors (mGluRs) may operate spinal plasticity remains essentially unexplored. Here, we have identified spike-timing dependent synaptic plasticity in substantia gelatinosa (SG) neurons, using perforated patch-clamp recordings of SG neuron in a spinal cord slice preparation. In the presence of bicuculline and strychnine, long-term potentiation (LTP) was blocked by AP-5 and Ca2+ chelator BAPTA-AM. The group I mGluR antagonist AIDA, PLC inhibitor U-73122, and IP3 receptor blocker 2-APB shifted LTP to long-term depression (LTD) without affecting acute synaptic transmission. These findings provide a link between postsynaptic group I mGluR/PLC/IP3-gated Ca2+ store regulating the polarity of synaptic plasticity and spinal central sensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.06.134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!