Background: Naturally occurring CD4+ CD25+ regulatory T cells (TReg) are involved in the control of autoimmune diseases, transplantation tolerance, and anti-tumor immunity. Thus far, genomic studies on TReg cells were restricted to murine systems, and requirements for their development, maintenance, and mode of action in humans are poorly defined.
Results: To improve characterization of human TReg cells, we compiled a unique microarray consisting of 350 TReg cell associated genes (Human TReg Chip) based on whole genome transcription data from human and mouse TReg cells. TReg cell specific gene signatures were created from 11 individual healthy donors. Statistical analysis identified 62 genes differentially expressed in TReg cells, emphasizing some cross-species differences between mice and humans. Among them, several 'old friends' (including FOXP3, CTLA4, and CCR7) that are known to be involved in TReg cell function were recovered. Strikingly, the vast majority of genes identified had not previously been associated with human TReg cells (including LGALS3, TIAF1, and TRAF1). Most of these 'new players' however, have been described in the pathogenesis of autoimmunity. Real-time RT-PCR of selected genes validated our microarray results. Pathway analysis was applied to extract signaling modules underlying human TReg cell function.
Conclusion: The comprehensive set of genes reported here provides a defined starting point to unravel the unique characteristics of human TReg cells. The Human TReg Chip constructed and validated here is available to the scientific community and is a useful tool with which to study the molecular mechanisms that orchestrate TReg cells under physiologic and diseased conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779567 | PMC |
http://dx.doi.org/10.1186/gb-2006-7-7-r54 | DOI Listing |
J Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.
Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.
Inflammation
January 2025
Department of Otorhinolaryngology, Dankook University College of Medicine, 201 Manghyang-Ro, Dongnam-Gu, Cheonan, 31116, Republic of Korea.
During nasal polyp (NP) development, activated T cells differentiate into T helper (Th) 1, Th2, and Th17 cells. Additionally, regulatory T cells (Tregs) that have an immune suppressive function are involved in the pathophysiology of chronic rhinosinusitis (CRS) with NP (CRSwNP). Tregs can act as effector cells that produce inflammatory cytokines, such as interleukin (IL)-17A.
View Article and Find Full Text PDFDrug Resist Updat
December 2024
Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China. Electronic address:
The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!