Malignant hyperthermia (MH) is a dominantly inherited pharmacogenetic condition that manifests as a life-threatening hypermetabolic reaction when a susceptible individual is exposed to common volatile anesthetics and depolarizing muscle relaxants. Although MH appears to be genetically heterogeneous, RYR1 is the main candidate for MH susceptibility. However, since molecular analysis is generally limited to exons where mutations are more frequently detected, these are routinely found only in 30-50% of susceptible subjects. In this study the entire RYR1 coding region was analyzed in a cohort of 50 Italian MH susceptible (MHS) subjects. Thirty-one mutations, 16 of which were novel, were found in 43 individuals with a mutation detection rate of 86%, the highest reported for RYR1 in MH so far. These data provide clear evidence that mutations in the RYR1 gene are the predominant cause of MH.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.9442DOI Listing

Publication Analysis

Top Keywords

ryr1 gene
8
malignant hyperthermia
8
ryr1
5
frequency localization
4
mutations
4
localization mutations
4
mutations 106
4
106 exons
4
exons ryr1
4
gene individuals
4

Similar Publications

Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.

View Article and Find Full Text PDF

Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca release, consistent with a remodeling of the calcium signaling pathway.

View Article and Find Full Text PDF

Uncovering potential causal genes for undiagnosed congenital anomalies using an in-house pipeline for trio-based whole-genome sequencing.

Hum Genomics

January 2025

Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.

Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.

View Article and Find Full Text PDF

Objectives: We aimed to classify genetic variants in RYR1 and CACNA1S associated with malignant hyperthermia using biobank genotyping data in patients exposed to triggering anesthetics without malignant hyperthermia phenotype.

Methods: We identified individuals who underwent surgery and were exposed to triggering anesthetics without malignant hyperthermia phenotype and who had RYR1 or CACNA1S genotyping data available in our biobank. We classified all variants in the cohort using a Bayesian framework of the American College of Medical Genetics and Genomics and the Association of Molecular Pathologists guidelines for variant classification and updated the posterior probabilities from this model with the new information from our biobank cohort.

View Article and Find Full Text PDF

Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!