Subcellular fractionation represents an essential technique for functional proteome analysis. Recently, we provided a subcellular fractionation protocol for minute amounts of tissue that yielded a nuclear fraction, a membrane and organelle fraction, and a cytosolic fraction. In the current study, we attempted to improve the protocol for the isolation of integral membrane proteins, as these are particularly important for brain function. In the membrane and organelle fraction, we increased the yield of membranes and organelles by about 50% by introducing a single re-extraction step. We then tested two protocols towards their capacity to enrich membrane proteins present in the membrane and organelle fraction. One protocol is based on sequential solubilization using subsequent increases of chaotropic conditions such as urea, thereby partitioning hydrophobic proteins from hydrophilic ones. The alternative protocol applies high-salt and high-pH washes to remove non-membrane proteins. The enrichment of membrane proteins by these procedures, as compared to the original membrane and organelle fraction, was evaluated by 16-BAC-SDS-PAGE followed by mass spectrometry of randomly selected spots. In the original membrane and organelle fraction, 7 of 50 (14%) identified proteins represented integral membrane proteins, and 15 (30%) were peripheral membrane proteins. In the urea-soluble fraction, 4 of 33 (12%) identified proteins represented integral membrane proteins, and 10 (30%) were peripheral membrane proteins. In the high-salt/high-pH resistant sediment, 12 of 45 (27%) identified proteins were integral membrane proteins and 13 (29%) represented peripheral membrane proteins. During the analysis, several proteins involved in neuroexocytosis were detected, including syntaxin, NSF, and Rab3-interaction protein 2. Taken together, differential centrifugation in combination with high-salt and high-pH washes resulted in the highest enrichment of integral membrane proteins and, therefore, represents an adequate technique for region-specific profiling of membrane proteins in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-006-0508-4 | DOI Listing |
Am J Trop Med Hyg
January 2025
Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México.
The socioecological conditions of Mexican regions are conducive to the spread of vector-borne diseases. Although there are established treatment guidelines for dengue and rickettsiosis, diagnosis is complicated. The objective of this work was to identify epitopes of Rickettsia and dengue virus that could be used in serology screening against vector-borne diseases.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.
View Article and Find Full Text PDFJ Neurochem
January 2025
Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.
Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.
View Article and Find Full Text PDFSci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!