Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3125
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A theoretical study of two-dimensional photonic crystals made of anisotropic material is presented. Detailed computation principles including a treatment of the TE and TM polarizations are given for a photonic crystal made of either uniaxially or biaxially anisotropic materials. These two polarizations can be decoupled as long as any one of the principal axes of the anisotropic material is perpendicular to the periodic plane of the photonic crystal. The symmetry loss due to the anisotropy of the material and the variation of the Brillouin zones relative to the tensor orientations are also analyzed. Furthermore, the symmetry properties of the two-dimensional photonic band structure are studied, and the resulting effect on the photonic bandgap and the dispersion properties of photonic crystal are analyzed as a function of the orientation of the anisotropic material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/josaa.23.002002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!