Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This investigation determined the influence of acute and chronic resistance exercise on responses of growth hormone (GH) molecular variants in women. Seventy-four healthy young women (23 +/- 3 yr, 167 +/- 7 cm, 63.8 +/- 9.3 kg, 26.3 +/- 4.0% body fat) performed an acute bout of resistance exercise (6 sets of 10 repetition maximum squat). Blood samples were obtained pre- and postexercise. Resulting plasma was fractionated by molecular mass (fraction A, >60 kDa; fraction B, 30-60 kDa; and fraction C, <30 kDa) using chromatography. Fractionated and unfractionated (UF) plasma was then assayed for GH using three different detection systems (monoclonal immunoassay, polyclonal immunoassay, and rat tibial line in vivo bioassay). Subjects were then matched and randomly placed into one of four resistance exercise training groups or a control group for 24 wk. All experimental procedures were repeated on completion of the 24-wk resistance training programs. After acute exercise, immunoassays showed consistent increases in UF GH samples and fractions B and C; increases in fraction A using immunoassay were seen only in the monoclonal assay. No consistent changes in bioactive GH were found following acute exercise. Conversely, chronic exercise induced no consistent changes in immunoassayable GH of various molecular masses, whereas, in general, bioassayable GH increased. In summary, although acute exercise increased only immunoactive GH, chronic physical training increased the biological activity of circulating GH molecular variants. Increased bioactive GH was observed across all fractions and training regimens, suggesting that chronic resistance exercise increased a spectrum of GH molecules that may be necessary for the multitude of somatogenic and metabolic actions of GH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00042.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!