The ARE (AU-rich element) is a post-transcriptional element controlling both mRNA turnover and translation initiation by primarily inducing poly(A) tail shortening. The mechanisms by which the ARE-associated proteins induce deadenylation are still obscure. One possibility among others would be that an ARE-ARE-BP (ARE-binding protein) complex intervenes in the PABP [poly(A)-binding protein]-poly(A) tail association and facilitates poly(A) tail accessibility to deadenylases. Here, we show by several experimental approaches that AUF1 (AU-rich element RNA-binding protein 1)/hnRNP (heterogeneous nuclear ribonucleoprotein) D, an mRNA-destabilizing ARE-BP, can bind poly(A) sequence in vitro. First, endogenous AUF1 proteins from HeLa cells specifically bound poly(A), independently of PABP. Secondly, using polyadenylated RNA probes, we showed that (i) the four recombinant AUF1 isoforms bind poly(A) as efficiently as PABP, (ii) the AUF1 binding to poly(A) does not change when the polyadenylated probe contains the GM-CSF (granulocyte/macrophage-colony stimulating factor) ARE, suggesting that, in vitro, the AUF1-poly(A) association was independent of the ARE sequence itself. In vitro, the binding of AUF1 isoforms to poly(A) displayed oligomeric and co-operative properties and AUF1 efficiently displaced PABP from the poly(A). Finally, the AUF1 molar concentration in HeLa cytoplasm was only 2-fold lower than that of PABP, whereas in the nucleus, its molar concentration was similar to that of PABP. These in vitro results suggest that, in vivo, AUF1 could compete with PABP for the binding to poly(A). Altogether, our results may suggest a role for AUF1 in controlling PABP-poly(A) tail association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1652824 | PMC |
http://dx.doi.org/10.1042/BJ20060328 | DOI Listing |
Biochem Pharmacol
January 2025
Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China. Electronic address:
Colorectal cancer (CRC) is a malignancy with high global incidence and mortality rates, posing a serious threat to human health. Despite favorable outcomes following early detection and surgical intervention, the asymptomatic nature of CRC often results in delayed diagnoses, limiting surgical treatment options. Furthermore, effective therapeutic drugs for CRC remain lacking in clinical practice, highlighting an urgent need to identify novel therapeutic targets.
View Article and Find Full Text PDFCell Oncol (Dordr)
December 2024
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Purpose: Clarification of cisplatin resistance may provide new targets for therapy in cisplatin resistant ovarian cancer. The current study aims to explore involvement of isoforms of AU-rich element RNA-binding protein 1 (AUF1) in cisplatin resistance in ovarian cancer.
Methods: The cancer stem cell-like features were analyzed using colony formation assay, tumor sphere formation assay and nude mouse xenograft experiments.
Mol Cell Endocrinol
January 2025
From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.
View Article and Find Full Text PDFMol Carcinog
November 2024
Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan.
Pain
October 2024
Division of Pain Management, Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!