We report a practical implementation of high-efficiency color conversion in an electrically pumped light-emitting diode (LED) using nonradiative energy transfer. On the basis of a new LED design that offers both strong energy-transfer coupling and efficient carrier injection, we show that a hybrid structure comprising a single monolayer of CdSe nanocrystals assembled on top of an InGaN/GaN quantum well provides nearly 10% color conversion efficiency. This value is significantly higher than that for a traditional absorption-re-emission color-conversion scheme in a similar device structure. Furthermore, these hybrid devices can also provide improved efficiencies, compared not only to phosphor-based structures but also to stand-alone LEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl060392tDOI Listing

Publication Analysis

Top Keywords

color conversion
12
nonradiative energy
8
energy transfer
8
nanocrystal-based light-emitting
4
light-emitting diodes
4
diodes utilizing
4
utilizing high-efficiency
4
high-efficiency nonradiative
4
transfer color
4
conversion report
4

Similar Publications

Recycling of Post-Consumer Waste Polystyrene Using Commercial Plastic Additives.

ACS Cent Sci

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.

View Article and Find Full Text PDF

Residual nitrite (NO) and nitrate (NO) have been widely studied in the past few decades for their function to improve processed meat quality and their impact on human health. In this study we examined how the residual nitrite and nitrate (NO) content of major classes of processed meats products (n = 1132) produced locally from three regions (East Coast, Midwest and West Coast) and plant protein-based meat analogues (n = 53) available at retail in the United States was influenced by their composition, processing, and geographical attributes. We also conducted time-dependent depletion studies and observed different patterns of NO depletion and conversion during processing and storage and correlated them with product quality.

View Article and Find Full Text PDF

Prediction of growth and feed efficiency in mink using machine learning algorithms.

Animal

September 2024

Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada. Electronic address:

The feed efficiency (FE) expresses as the amount of feed required per unit of BW gain. Since feed cost is the major input cost in the mink industry, evaluating of FE is a crucial step for competitiveness of the mink industry. However, the FE measures have not been widely adopted for the mink due to the high cost of periodically measuring BW and daily feed intake.

View Article and Find Full Text PDF

Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440-470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm.

View Article and Find Full Text PDF

Quantum Dot Luminescence Microspheres Enable Ultra-Efficient and Bright Micro-LEDs.

Adv Mater

January 2025

Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.

Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!