Photoinduced intramolecular charge-separation and charge-recombination processes in covalently connected C(60)-(spacer)-bis(biphenyl)aniline (C(60)-sp-BBA) and C(60)-((spacer)-bis(biphenyl)aniline)(2) (C(60)-(sp-BBA)(2)) have been studied by time-resolved fluorescence and transient absorption methods. Since a flexible alkylthioacetoamide chain was employed as the spacer, the folded structures in which the BBA moiety approaches the C(60) moiety were obtained as optimized structures by molecular orbital calculations. The observed low fluorescence intensity and the short fluorescence lifetime of the C(60) moiety of these molecular systems indicated that charge separation takes place via the excited singlet state of the C(60) moiety in a quite fast rate and high efficiency even in the nonpolar solvent toluene, which was a quite new observation compared with reported dyads with different spacers. From the absorption bands at 880 and 1000 nm in the nanosecond transient absorption spectra, generations of C(60)(.-)-sp-BBA(.+) and C(60)(.-)-(sp-BBA(.+))(sp-BBA) were confirmed. The rates of charge separation and charge recombination for C(60)-(sp-BBA)(2) are faster than those for C(60)-sp-BBA, suggesting that one of the BBA moieties approaches the C(60) moiety by pushing another BBA moiety because of the flexible spacers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp052063f | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822.
The cyclopentadiene (CH) molecule has emerged as a molecular building block of nonplanar polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanostructures such as corannulene (CH), nanobowls (CH), and fullerenes (C) in deep space. However, the underlying elementary gas-phase processes synthesizing cyclopentadiene from acyclic hydrocarbon precursors have remained elusive. Here, by merging crossed molecular beam experiments with rate coefficient calculations and comprehensive astrochemical modeling, we afford persuasive testimony on an unconventional low-temperature cyclization pathway to cyclopentadiene from acyclic precursors through the reaction of the simplest diatomic organic radical-methylidyne (CH)-with 1,3-butadiene (CH) representing main route to cyclopentadiene observed in TaurusMolecular Cloud.
View Article and Find Full Text PDFChem Asian J
November 2024
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
A π-extended cyclobutenofullerene containing an N,N-dimethylanilinoethynyl group was synthesized via a one-pot cascade reaction of C with the corresponding propargylic phosphate. The cyclobutenofullerene was further modified using either one-pot or sequential post-functionalization methods, yielding derivatives containing altered addend structures. During one-pot post-functionalization, hydration reaction of the alkyne moiety continued after the formation of cyclobutenofullerenes.
View Article and Find Full Text PDFBeilstein J Org Chem
October 2024
Department of Biotechnology and Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama 939-0398, Japan.
We have reported that upon visible light irradiation, ferrocene-porphyrin-[60]fullerene triad molecules yield long-lived charge-separated states, enabling the control of the plasma membrane potential ( ) in living cells. These previous studies indicated that the localization of the triad molecules in a specific intra-membrane orientation and the suppression of the photodynamic actions of the [60]fullerene (C) moiety are likely important to achieve fast and safe control of , respectively. In this study, by mimicking our previous system of triad molecules and living cells, we report a simplified model system with a cationic C derivative (catC) and a liposome with embedded 1-pyrenebutyric acid (PyBA) to demonstrate that the addition of PyBA was important to achieve fast and safer control of .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
We report here a novel family of ylidic P-heteroarenes (P1-P6), structurally featuring unique phosphonium cyclopentadienylide (P-Cp)-fused π-skeletons and synthetically prepared via an unexpected one-pot [2+3]/[3+3] phospha-annulation reaction. While the facile and modular synthesis allows the fine-tuning of their optical absorptions and redox properties, single-crystallographic and theoretical analysis of these P-heteroarenes further reveal that the fusion of P-Cp moiety leads to substantial intramolecular charge-separated features with high ylidic character values of up to 84 %. Benefitted from such dipolar structures, these P-heteroarenes not only allows stepwise electrophilic substitution reaction for further structural π-expansions, but also exhibit excellent nonlinear optical (NLO) responses and optical limiting (OL) performances comparable to or exceed those of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!