Doppler-free two-photon excitation spectra and the Zeeman effects for the 1 band of the S1 1B2u <-- S0 1A1g transition in gaseous benzene-d6 were measured. Although the spectral lines were strongly perturbed, almost all of the lines near the band origin could be assigned. From a deperturbation analysis, the perturbation near the band origin was identified as originating from an anharmonic resonance interaction. Perturbation centered at K = 28-29 in the 14(0)1 band was analyzed, and it was identified as originating from a perpendicular Coriolis interaction. The symmetry and the assignment of the perturbing state proposed by Schubert et al. (Schubert, U.; Riedle, E.; Neusser, H. J. J. Chem. Phys. 1989, 90, 5994.) were confirmed. No perturbation originating from an interaction with a triplet state was observed in both bands. From the Zeeman spectra and the analysis, it is demonstrated that rotationally resolved levels are not mixed with a triplet state. The intersystem mixing is not likely to occur at levels of low excess energy in the S1 state of an isolated benzene. Nonradiative decay of an isolated benzene in the low vibronic levels of the S1 state will occur through the internal mixing followed by the rotational and vibrational relaxation in the S0 state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0513115DOI Listing

Publication Analysis

Top Keywords

doppler-free two-photon
4
two-photon excitation
4
excitation spectroscopy
4
spectroscopy zeeman
4
zeeman effects
4
effects perturbations
4
perturbations 1401
4
1401 1011401
4
1011401 bands
4
doppler-free
1

Similar Publications

Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.

View Article and Find Full Text PDF

We have developed a high performance atomic frequency standard based on Doppler-free direct frequency comb excitation of a two-photon transition in Rb. We demonstrate equivalent performance compared to an identical system based on cw laser excitation of the clock transition. This approach greatly simplifies optical clock architecture and eliminates the need for cw lasers in many two-photon frequency standards.

View Article and Find Full Text PDF

Precision measurements of molecular transitions to highly excited states are needed in potential energy surface modeling, state-resolved chemical dynamics studies, and astrophysical spectra analysis. Selective pumping and probing of molecules are often challenging due to the high state density and weak transition moments. We present a mid-infrared and near-infrared double-resonance spectroscopy method for precision measurements.

View Article and Find Full Text PDF

We report the measurement of hyperfine splitting (HFS) in the 7D state of Cs using high-resolution Doppler-free two-photon spectroscopy enabled by precise frequency scans using an acousto-optic modulator (AOM). All six hyperfine levels are resolved in our spectra. We determine the hyperfine coupling constants A = -1.

View Article and Find Full Text PDF

Degenerate Two-Photon Rydberg Atom Voltage Reference.

AVS Quantum Sci

June 2022

Time and Frequency Division, National Institute of Standards and Technology (NIST), Boulder, Colorado 80305, USA.

We implement a DC voltage reference by measuring Stark shifts of cesium Rydberg atoms in a vapor cell. Cesium atoms are excited from the ground state to the 15s state via a degenerate two-photon transition that provides a narrow, Doppler free line. The 15s state experiences a scalar, quadratic stark shift which is used to measure the voltage across a parallel plate capacitor integrated into the vapor cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!