13C NMR relaxation rates in the ionic liquid 1-methyl-3-nonylimidazolium hexafluorophosphate.

J Phys Chem A

Institut für Physikalische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany.

Published: August 2005

AI Article Synopsis

  • A new method to study molecular movements in [MNIM]PF6 ionic liquid uses 13C spin-lattice relaxation data from aromatic carbons.
  • This approach helps determine important time factors called pseudorotational correlation times and calculates how these are affected by viscosity changes across different temperatures.
  • The results also align the cation's molecular size with theoretical calculations, revealing similarities in chemical shift behavior with other compounds like pyrimidine in liquid crystal environments.

Article Abstract

A new method of obtaining molecular reorientational dynamics from 13C spin-lattice relaxation data of aromatic carbons in viscous solutions is applied to 13C relaxation data of the ionic liquid, 1-methyl-3-nonylimidazolium hexafluorophosphate ([MNIM]PF6). Spin-lattice relaxation times (13C) are used to determine pseudorotational correlation times for the [MNIM]PF6 ionic liquid. Pseudorotational correlation times are used to calculate corrected maximum NOE factors from a combined isotropic dipolar and nuclear Overhauser effect (NOE) equation. These corrected maximum NOE factors are then used to determine the dipolar relaxation rate part of the total relaxation rate for each aromatic 13C nucleus in the imidazolium ring. Rotational correlation times are compared with viscosity data and indicate several [MNIM]PF6 phase changes over the temperature range from 282 to 362 K. Modifications of the Stokes-Einstein-Debye (SED) model are used to determine molecular radii for the 1-methyl-3-nonylimidazolium cation. The Hu-Zwanzig correction yields a cationic radius that compares favorably with a DFT gas-phase calculation, B3LYP/(6-311+G(2d,p)). Chemical shift anisotropy values, delta sigma, are obtained for the ring and immediately adjacent methylene and methyl carbons in the imidazolium cation. The average delta sigma values for the imidazolium ring carbons are similar to those of pyrimidine in liquid crystal solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0518005DOI Listing

Publication Analysis

Top Keywords

ionic liquid
12
correlation times
12
liquid 1-methyl-3-nonylimidazolium
8
1-methyl-3-nonylimidazolium hexafluorophosphate
8
spin-lattice relaxation
8
relaxation data
8
pseudorotational correlation
8
corrected maximum
8
maximum noe
8
noe factors
8

Similar Publications

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

Facile and Regioselective Deuteration of C2-Alkylated Imidazolium Salts in the Presence of Cesium Carbonate.

Chemistry

December 2024

Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.

Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!