The low-lying singlet states (i.e. S0, S1, and S2) of the chromophore of rhodopsin, the protonated Schiff base of 11-cis-retinal (PSB11), and of its all-trans photoproduct have been studied in isolated conditions by using ab initio multiconfigurational second-order perturbation theory. The computed spectroscopic features include the vertical excitation, the band origin, and the fluorescence maximum of both isomers. On the basis of the S0-->S1 vertical excitation, the gas-phase absorption maximum of PSB11 is predicted to be 545 nm (2.28 eV). Thus, the predicted absorption maximum appears to be closer to that of the rhodopsin pigment (2.48 eV) and considerably red-shifted with respect to that measured in solution (2.82 eV in methanol). In addition, the absorption maxima associated with the blue, green, and red cone visual pigments are tentatively rationalized in terms of the spectral changes computed for PSB11 structures featuring differently twisted beta-ionone rings. More specifically, a blue-shifted absorption maximum is explained in terms of a large twisting of the beta-ionone ring (with respect to the main conjugated chain) in the visual S-cone (blue) pigment chromophore. In contrast, the chromophore of the visual L-cone (red) pigment is expected to have a nearly coplanar beta-ionone ring yielding a six double bond fully conjugated framework. Finally, the M-cone (green) chromophore is expected to feature a twisting angle between 10 and 60 degrees. The spectroscopic effects of the alkyl substituents on the PSB11 spectroscopic properties have also been investigated. It is found that they have a not negligible stabilizing effect on the S1-S0 energy gap (and, thus, cause a red shift of the absorption maximum) only when the double bond of the beta-ionone ring conjugates significantly with the rest of the conjugated chain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp052068cDOI Listing

Publication Analysis

Top Keywords

absorption maximum
16
beta-ionone ring
12
vertical excitation
8
conjugated chain
8
double bond
8
chromophore
5
beta-ionone
5
maximum
5
absorption
5
structure spectroscopy
4

Similar Publications

In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.

View Article and Find Full Text PDF

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

Optimization of parallel coiled cavities of different depths in microperforated panel sound absorbers.

Sci Rep

January 2025

Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, School of Architecture, Southeast University, 2# Sipailou, Nanjing, 210096, China.

This paper presents a microperforated panel (MPP) sound absorber with parallel coiled-up-cavities of different-depths (PCD) and the corresponding optimization on their cavities. In this study, an analytical model is initially proposed for estimating the cavity depths of the PCD-MPP absorber upon normal incidence absorption coefficient evaluation at given resonance frequencies. Cavity effective depths and normal incidence absorption coefficient are evaluated after coiling up cavities for a compact structure.

View Article and Find Full Text PDF

In this study, the effect of freeze-thaw (F-T) processes on the mechanical and water absorption performance of citrate cross-linked chitosan/poly(vinyl alcohol) hydrogel pads was evaluated. An excellent cross-linking of 4 % (w/w) citrate was indicated by enhanced peak strength in Fourier-transform infrared spectroscopy and X-ray diffraction patterns, which was applied to the subsequent F-T process. The results in the deswelling rate, water contact angle, and relaxation time of samples exhibited a tendency to decrease and then increase with increasing F-T cycles, reaching a minimum of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!