AI Article Synopsis

Article Abstract

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate deltaH(o) and deltaG(o) values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4(+) (NH3)n and NH4(+) (H2O)n, where n = 1-4, are reported in this paper and compared against experimental values. Agreement with the experimental values for deltaH(o) and deltaG(o) for formation of NH4(+) (NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4(+) (H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0514372DOI Listing

Publication Analysis

Top Keywords

model chemistry
12
experimental values
12
density functional
8
functional theory
8
ionic clusters
8
clusters ammonium
8
complexed water
8
water ammonia
8
chemistry methods
8
dft methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!